MATLAB

The Language of Technical Computing

Computation

Visualization

Programming

MATLAB Function Reference Volume 3: P - Z

Version 6

How to Contact The MathWorks:

	www.mathworks.com comp.soft-sys.matlab	Web Newsgroup
@	support@mathworks.com suggest@mathworks.com bugs@mathworks.com doc@mathworks.com service@mathworks.com info@mathworks.com	Technical support Product enhancement suggestions Bug reports Documentation error reports Order status, license renewals, passcodes Sales, pricing, and general information
1	508-647-7000	Phone
	508-647-7001	Fax
	The MathWorks, Inc. 3 Apple Hill Drive Natick, MA 01760-2098	Mail

For contact information about worldwide offices, see the MathWorks Web site.

MATLAB Function Reference Volume 3: P - Z

© COPYRIGHT 1984 - 2002 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by or for the federal government of the United States. By accepting delivery of the Program, the government hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part 252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain to the government's use and disclosure of the Program and Documentation, and shall supersede any conflicting contractual terms or conditions. If this license fails to meet the government's minimum needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History:	December 1996	First printing	For MATLAB 5
	June 1997	Online only	Revised for 5.1
	October 1997	Online only	Revised for 5.2
	January 1999	Online only	Revised for Release 11
	June 1999	Second printing	For Release 11
	June 2001	Online only	Revised for 6.1
	July 2002	Online only	Revised for 6.5 (Release 13)

Contents

Functions - By Category

-		

Development Environment 1-2
Starting and Quitting 1-2
Command Window 1-2
Getting Help 1-3
Workspace, File, and Search Path 1-3
Programming Tools 1-4
System 1-5
Performance Improvement Tools and Techniques 1-5
Mathematics 1-6
Arrays and Matrices 1-7
Linear Algebra 1-9
Elementary Math 1-11
Data Analysis and Fourier Transforms 1-13
Polynomials 1-14
Interpolation and Computational Geometry 1-15
Coordinate System Conversion 1-16
Nonlinear Numerical Methods 1-16
Specialized Math 1-18
Sparse Matrices 1-18
Math Constants 1-20
Programming and Data Types 1-21
Data Types
Arrays
Operators and Operations 1-27
Programming in MATLAB 1-29
File I/O 1-34
Filename Construction 1-34
Opening, Loading, Saving Files 1-34
Low-Level File I/O 1-35
Text Files 1-35
XML Documents 1-35

Spreadsheets	1-35
Scientific Data	1-36
Audio and Audio/Video	1-36
Images	
Graphics	1-38
Basic Plots and Graphs	1-38
Annotating Plots	1-38
Specialized Plotting	
Bit-Mapped Images	
Printing	
Handle Graphics	
3-D Visualization	1-44
Surface and Mesh Plots	1-44
View Control	1-45
Lighting	1-46
Transparency	
Volume Visualization	
Creating Graphical User Interfaces	1-48
Predefined Dialog Boxes	1-48
Deploying User Interfaces	
Developing User Interfaces	
User Interface Objects	
Finding Objects from Callbacks	
GUI Utility Functions	
Controlling Program Execution	

Functions – Alphabetical List

2

Index

Functions – By Category

The MATLAB Function Reference contains descriptions of all MATLAB commands and functions. Select a category from the following table to see a list of related functions.

Development Environment	Startup, Command Window, help, editing and debugging, other general functions
Mathematics	Arrays and matrices, linear algebra, data analysis, other areas of mathematics
Programming and Data Types	Function/expression evaluation, program control, function handles, object oriented programming, error handling, operators, data types, dates and times, timers
File I/O	General and low-level file I/O, plus specific file formats, like audio, spreadsheet, HDF, images
Graphics	Line plots, annotating graphs, specialized plots, images, printing, Handle Graphics
3-D Visualization	Surface and mesh plots, view control, lighting and transparency, volume visualization.
Creating Graphical User Interface	GUIDE, programming graphical user interfaces.
External Interfaces	Java, COM, Serial Port functions.

See Simulink, Stateflow, Real-Time Workshop, and the individual toolboxes for lists of their functions

Development Environment

General functions for working in MATLAB, including functions for startup, Command Window, help, and editing and debugging.

"Starting and Quitting"	Startup and shutdown options
"Command Window"	Controlling Command Window
"Getting Help"	Finding information
"Workspace, File, and Search Path"	File, search path, variable management
"Programming Tools"	Editing and debugging, source control, Notebook
"System"	Identifying current computer, license, product version, and more
"Performance Improvement Tools and Techniques"	Improving and assessing performance, e.g., profiling and memory use

Starting and Quitting

exi t	Terminate MATLAB (same as qui t)
finish	MATLAB termination M-file
matlab	Start MATLAB (UNIX systems only)
matlabrc	MATLAB startup M-file for single user systems or
	administrators
qui t	Terminate MATLAB
startup	MATLAB startup M-file for user-defined options

Command Window

cl c	Clear Command Window
di ary	Save session to file
dos	Execute DOS command and return result
format	Control display format for output
home	Move cursor to upper left corner of Command Window
more	Control paged output for Command Window
notebook	Open M-book in Microsoft Word (Windows only)
system	Execute operating system command and return result
uni x	Execute UNIX command and return result

Getting Help

doc	Display online documentation in MATLAB Help browser
demo	Access product demos via Help browser
docopt	Location of help file directory for UNIX platforms
hel p	Display help for MATLAB functions in Command Window
hel pbrowser	Display Help browser for access to extensive online help
hel pwi n	Display M-file help, with access to M-file help for all functions
info	Display information about The MathWorks or products
lookfor	Search for specified keyword in all help entries
support	Open MathWorks Technical Support Web page
web	Point Help browser or Web browser to file or Web site
whatsnew	Display information about MATLAB and toolbox releases

Workspace, File, and Search Path

- "Workspace"
- "File"
- "Search Path"

Workspace

assi gni n	Assign value to workspace variable
cl ear	Remove items from workspace, freeing up system memory
eval i n	Execute string containing MATLAB expression in a workspace
exi st	Check if variable or file exists
openvar	Open workspace variable in Array Editor for graphical editing
pack	Consolidate workspace memory
whi ch	Locate functions and files
who, whos	List variables in the workspace
workspace	Display Workspace browser, a tool for managing the workspace

File

cd	Change working directory
copyfile	Copy file or directory
delete	Delete files or graphics objects
di r	Display directory listing
exi st	Check if a variable or file exists
fileattrib	Set or get attributes of file or directory
filebrowser	Display Current Directory browser, a tool for viewing files
lookfor	Search for specified keyword in all help entries
ls	List directory on UNIX

matl abroot	Return root directory of MATLAB installation
mkdi r	Make new directory
movefile	Move file or directory
pwd	Display current directory
rehash	Refresh function and file system caches
rmdi r	Remove directory
type	List file
what	List MATLAB specific files in current directory
whi ch	Locate functions and files

See also "File I/O" functions.

Search Path

addpath	Add directories to MATLAB search path
genpath	Generate path string
parti al path	Partial pathname
path	View or change the MATLAB directory search path
path2rc	Save current MATLAB search path to pathdef. m file
pathtool	Open Set Path dialog box to view and change MATLAB path
rmpath	Remove directories from MATLAB search path

Programming Tools

- "Editing and Debugging"
- "Source Control"
- "Notebook"

Editing and Debugging

dbcl ear dbcont	Clear breakpoints Resume execution
dbdown	Change local workspace context
dbqui t	Quit debug mode
dbstack	Display function call stack
dbstatus	List all breakpoints
dbstep	Execute one or more lines from current breakpoint
dbstop	Set breakpoints in M-file function
dbtype	List M-file with line numbers
dbup	Change local workspace context
edi t	Edit or create M-file
keyboard	Invoke the keyboard in an M-file

Source Control

checki n	Check file into source control system
checkout	Check file out of source control system
cmopts	Get name of source control system
customverctrl	Allow custom source control system
undocheckout	Undo previous checkout from source control system
verctrl	Version control operations on PC platforms

Notebook

notebook	Open M-book ir	n Microsoft Word	(Windows	only)
----------	----------------	------------------	----------	-------

System

computer	Identify information about computer on which MATLAB is
	running
j avachk	Generate error message based on Java feature support
license	Show license number for MATLAB
prefdi r	Return directory containing preferences, history, and . i ni files
usej ava	Determine if a Java feature is supported in MATLAB
ver	Display version information for MathWorks products
version	Get MATLAB version number

Performance Improvement Tools and Techniques

memory	Help for memory limitations
pack	Consolidate workspace memory
profile	Optimize performance of M-file code
profreport	Generate profile report
rehash	Refresh function and file system caches
sparse	Create sparse matrix
zeros	Create array of all zeros

Mathematics

Functions for working with arrays and matrices, linear algebra, data analysis, and other areas of mathematics.

"Arrays and Matrices"	Basic array operators and operations, creation of elementary and specialized arrays and matrices
"Linear Algebra"	Matrix analysis, linear equations, eigenvalues, singular values, logarithms, exponentials, factorization
"Elementary Math"	Trigonometry, exponentials and logarithms, complex values, rounding, remainders, discrete math
"Data Analysis and Fourier Transforms"	Descriptive statistics, finite differences, correlation, filtering and convolution, fourier transforms
"Polynomials"	Multiplication, division, evaluation, roots, derivatives, integration, eigenvalue problem, curve fitting, partial fraction expansion
"Interpolation and Computational Geometry"	Interpolation, Delaunay triangulation and tessellation, convex hulls, Voronoi diagrams, domain generation
"Coordinate System Conversion"	Conversions between Cartesian and polar or spherical coordinates
"Nonlinear Numerical Methods"	Differential equations, optimization, integration
"Specialized Math"	Airy, Bessel, Jacobi, Legendre, beta, elliptic, error, exponential integral, gamma functions
"Sparse Matrices"	Elementary sparse matrices, operations, reordering algorithms, linear algebra, iterative methods, tree operations
"Math Constants"	Pi, imaginary unit, infinity, Not-a-Number, largest and smallest positive floating point numbers, floating point relative accuracy

Arrays and Matrices

- "Basic Information"
- "Operators"
- "Operations and Manipulation"
- "Elementary Matrices and Arrays"
- "Specialized Matrices"

Basic Information

di sp	Display array
di spl ay	Display array
isempty	True for empty matrix
i sequal	True if arrays are identical
i sl ogi cal	True for logical array
isnumeric	True for numeric arrays
i ssparse	True for sparse matrix
length	Length of vector
ndi ms	Number of dimensions
numel	Number of elements
si ze	Size of matrix

Operators

+	Addition
+	Unary plus
-	Subtraction
-	Unary minus
*	Matrix multiplication
^	Matrix power
\backslash	Backslash or left matrix divide
/	Slash or right matrix divide
'	Transpose
. '	Nonconjugated transpose
.*	Array multiplication (element-wise)
. ^	Array power (element-wise)
. \	Left array divide (element-wise)
./	Right array divide (element-wise)

Operations and Manipulation

: (colon)	Index into array, rearrange array
bl kdi ag	Block diagonal concatenation

cat	Concatenate arrays
cross	Vector cross product
cumprod	Cumulative product
cumsum	Cumulative sum
di ag	Diagonal matrices and diagonals of matrix
dot.	Vector dot product
end	Last index
find	Find indices of nonzero elements
	Flip matrices left-right
fliplr flipud	
flipud flindim	Flip matrices up-down
flipdim	Flip matrix along specified dimension Horizontal concatenation
horzcat	
i nd2sub	Multiple subscripts from linear index
ipermute	Inverse permute dimensions of multidimensional array
kron	Kronecker tensor product
max	Maximum elements of array
mi n	Minimum elements of array
permute	Rearrange dimensions of multidimensional array
prod	Product of array elements
repmat	Replicate and tile array
reshape	Reshape array
rot90	Rotate matrix 90 degrees
sort	Sort elements in ascending order
sortrows	Sort rows in ascending order
sum	Sum of array elements
sqrtm	Matrix square root
sub2i nd	Linear index from multiple subscripts
tril	Lower triangular part of matrix
triu	Upper triangular part of matrix
vertcat	Vertical concatenation

See also "Linear Algebra" for other matrix operations. See also "Elementary Math" for other array operations.

Elementary Matrices and Arrays

: (colon)	Regularly spaced vector
bl kdi ag	Construct block diagonal matrix from input arguments
di ag	Diagonal matrices and diagonals of matrix
eye	Identity matrix
freqspace	Frequency spacing for frequency response
l i nspace	Generate linearly spaced vectors
logspace	Generate logarithmically spaced vectors

meshgri d	Generate X and Y matrices for three-dimensional plots
ndgri d	Arrays for multidimensional functions and interpolation
ones	Create array of all ones
rand	Uniformly distributed random numbers and arrays
randn	Normally distributed random numbers and arrays
repmat	Replicate and tile array
zeros	Create array of all zeros

Specialized Matrices

compan	Companion matrix
gallery	Test matrices
hadamard	Hadamard matrix
hankel	Hankel matrix
hi l b	Hilbert matrix
i nvhi l b	Inverse of Hilbert matrix
magi c	Magic square
pascal	Pascal matrix
rosser	Classic symmetric eigenvalue test problem
toeplitz	Toeplitz matrix
vander	Vandermonde matrix
wi l ki nson	Wilkinson's eigenvalue test matrix

Linear Algebra

- "Matrix Analysis"
- "Linear Equations"
- "Eigenvalues and Singular Values"
- "Matrix Logarithms and Exponentials"
- "Factorization"

Matrix Analysis

cond	Condition number with respect to inversion
condei g	Condition number with respect to eigenvalues
det	Determinant
norm	Matrix or vector norm
normest	Estimate matrix 2-norm
nul l	Null space
orth	Orthogonalization
rank	Matrix rank
rcond	Matrix reciprocal condition number estimate

rref	Reduced row echelon form
subspace	Angle between two subspaces
trace	Sum of diagonal elements

Linear Equations

\setminus and /	Linear equation solution
chol	Cholesky factorization
chol i nc	Incomplete Cholesky factorization
cond	Condition number with respect to inversion
condest	1-norm condition number estimate
funm	Evaluate general matrix function
i nv	Matrix inverse
lscov	Least squares solution in presence of known covariance
l sqnonneg	Nonnegative least squares
lu	LU matrix factorization
l ui nc	Incomplete LU factorization
pi nv	Moore-Penrose pseudoinverse of matrix
qr	Orthogonal-triangular decomposition
rcond	Matrix reciprocal condition number estimate

Eigenvalues and Singular Values

bal ance	Improve accuracy of computed eigenvalues
cdf2rdf	Convert complex diagonal form to real block diagonal form
condei g	Condition number with respect to eigenvalues
ei g	Eigenvalues and eigenvectors
ei gs	Eigenvalues and eigenvectors of sparse matrix
gsvd	Generalized singular value decomposition
hess	Hessenberg form of matrix
pol y	Polynomial with specified roots
pol yei g	Polynomial eigenvalue problem
qz	QZ factorization for generalized eigenvalues
rsf2csf	Convert real Schur form to complex Schur form
schur	Schur decomposition
svd	Singular value decomposition
svds	Singular values and vectors of sparse matrix

Matrix Logarithms and Exponentials

expm	Matrix exponential
logm	Matrix logarithm
sqrtm	Matrix square root

Factorization

bal ance	Diagonal scaling to improve eigenvalue accuracy
cdf2rdf	Complex diagonal form to real block diagonal form
chol	Cholesky factorization
chol i nc	Incomplete Cholesky factorization
chol updat e	Rank 1 update to Cholesky factorization
lu	LU matrix factorization
l ui nc	Incomplete LU factorization
pl anerot	Givens plane rotation
qr	Orthogonal-triangular decomposition
qrdel et e	Delete column or row from QR factorization
qri nsert	Insert column or row into QR factorization
qrupdate	Rank 1 update to QR factorization
qz	QZ factorization for generalized eigenvalues
rsf2csf	Real block diagonal form to complex diagonal form

Elementary Math

- "Trigonometric"
- "Exponential"
- "Complex"
- "Rounding and Remainder"
- "Discrete Math (e.g., Prime Factors)"

Trigonometric

acos	Inverse cosine
acosh	Inverse hyperbolic cosine
acot	Inverse cotangent
acoth	Inverse cosecant
acsc	Inverse cosecant
acsch	Inverse hyperbolic cosecant
asec	Inverse hyperbolic secant
asech	Inverse hyperbolic secant
asi n	Inverse sine
asi nh	Inverse hyperbolic sine
atan	Inverse tangent
atanh	Inverse tangent
atan2	Four-quadrant inverse tangent
cos	Cosine
cosh	Hyperbolic cosine
cot	Cotangent
coth	Hyperbolic cotangent

csc	Cosecant
csch	Hyperbolic cosecant
sec	Secant
sech	Hyperbolic secant
sin	Sine
si nh	Hyperbolic sine
tan	Tangent
tanh	Hyperbolic tangent

Exponential

exp	Exponential
log	Natural logarithm
l og2	Base 2 logarithm and dissect floating-point numbers into
	exponent and mantissa
l og10	Common (base 10) logarithm
nextpow2	Next higher power of 2
pow2	Base 2 power and scale floating-point number
reallog	Natural logarithm for nonnegative real arrays
real pow	Array power for real-only output
real sqrt	Square root for nonnegative real arrays
sqrt	Square root

Complex

abs	Absolute value
angl e	Phase angle
compl ex	Construct complex data from real and imaginary parts
conj	Complex conjugate
cpl xpai r	Sort numbers into complex conjugate pairs
i	Imaginary unit
i mag	Complex imaginary part
i sreal	True for real array
j	Imaginary unit
real	Complex real part
unwrap	Unwrap phase angle

Rounding and Remainder

Discrete Math (e.g., Prime Factors)

Prime factors
Factorial function
Greatest common divisor
True for prime numbers
Least common multiple
All combinations of N elements taken K at a time
All possible permutations
Generate list of prime numbers
Rational fraction approximation

Data Analysis and Fourier Transforms

- "Basic Operations"
- "Finite Differences"
- "Correlation"
- "Filtering and Convolution"
- "Fourier Transforms"

Basic Operations

cumprod	Cumulative product
cumsum	Cumulative sum
cumtrapz	Cumulative trapezoidal numerical integration
max	Maximum elements of array
mean	Average or mean value of arrays
medi an	Median value of arrays
mi n	Minimum elements of array
prod	Product of array elements
sort	Sort elements in ascending order
sortrows	Sort rows in ascending order
std	Standard deviation
sum	Sum of array elements
trapz	Trapezoidal numerical integration
var	Variance

Finite Differences

del 2	Discrete Laplacian
diff	Differences and approximate derivatives
gradi ent	Numerical gradient

Correlation

corrcoef	Correlation coefficients
cov	Covariance matrix
subspace	Angle between two subspaces

Filtering and Convolution

conv	Convolution and polynomial multiplication
conv2	Two-dimensional convolution
convn	N-dimensional convolution
deconv	Deconvolution and polynomial division
detrend	Linear trend removal
filter	Filter data with infinite impulse response (IIR) or finite
	impulse response (FIR) filter
filter2	Two-dimensional digital filtering

Fourier Transforms

abs	Absolute value and complex magnitude
angl e	Phase angle
fft	One-dimensional discrete Fourier transform
fft2	Two-dimensional discrete Fourier transform
fftn	N-dimensional discrete Fourier Transform
fftshift	Shift DC component of discrete Fourier transform to center of
	spectrum
ifft	Inverse one-dimensional discrete Fourier transform
ifft2	Inverse two-dimensional discrete Fourier transform
ifftn	Inverse multidimensional discrete Fourier transform
ifftshift	Inverse fast Fourier transform shift
nextpow2	Next power of two
unwrap	Correct phase angles

Polynomials

conv	Convolution and polynomial multiplication
deconv	Deconvolution and polynomial division
pol y	Polynomial with specified roots
polyder	Polynomial derivative
pol yei g	Polynomial eigenvalue problem
polyfit	Polynomial curve fitting
pol yi nt	Analytic polynomial integration
polyval	Polynomial evaluation
pol yval m	Matrix polynomial evaluation
resi due	Convert between partial fraction expansion and polynomial

roots coefficients Polynomial roots

Interpolation and Computational Geometry

- "Interpolation"
- "Delaunay Triangulation and Tessellation"
- "Convex Hull"
- "Voronoi Diagrams"
- "Domain Generation"

Interpolation

dsearch dsearchn griddata griddata3	Search for nearest point Multidimensional closest point search Data gridding Data gridding and hypersurface fitting for three-dimensional data
gri ddatan	Data gridding and hypersurface fitting (dimension >= 2)
interp1	One-dimensional data interpolation (table lookup)
interp2	Two-dimensional data interpolation (table lookup)
interp3	Three-dimensional data interpolation (table lookup)
interpft	One-dimensional interpolation using fast Fourier transform method
interpn	Multidimensional data interpolation (table lookup)
meshgri d	Generate X and Y matrices for three-dimensional plots
mkpp	Make piecewise polynomial
ndgri d	Generate arrays for multidimensional functions and
• •	interpolation
pchi p	Piecewise Cubic Hermite Interpolating Polynomial (PCHIP)
ppval	Piecewise polynomial evaluation
spl i ne	Cubic spline data interpolation
tsearchn	Multidimensional closest simplex search
unmkpp	Piecewise polynomial details

Delaunay Triangulation and Tessellation

del aunay	Delaunay triangulation
del aunay3	Three-dimensional Delaunay tessellation
del aunayn	Multidimensional Delaunay tessellation
dsearch	Search for nearest point
dsearchn	Multidimensional closest point search

tetramesh	Tetrahedron mesh plot
trimesh	Triangular mesh plot
tri pl ot	Two-dimensional triangular plot
trisurf	Triangular surface plot
tsearch	Search for enclosing Delaunay triangle
tsearchn	Multidimensional closest simplex search

Convex Hull

convhul l	Convex hull
convhul l n	Multidimensional convex hull
patch	Create patch graphics object
plot	Linear two-dimensional plot
trisurf	Triangular surface plot

Voronoi Diagrams

dsearch	Search for nearest point
patch	Create patch graphics object
plot	Linear two-dimensional plot
voronoi	Voronoi diagram
voronoi n	Multidimensional Voronoi diagrams

Domain Generation

meshgrid	Generate X and Y matrices for three-dimensional plots
ndgri d	Generate arrays for multidimensional functions and
-	interpolation

Coordinate System Conversion

Cartesian

cart2sph	Transform Cartesian to spherical coordinates
cart2pol	Transform Cartesian to polar coordinates
pol 2cart	Transform polar to Cartesian coordinates
sph2cart	Transform spherical to Cartesian coordinates

Nonlinear Numerical Methods

- "Ordinary Differential Equations (IVP)"
- "Delay Differential Equations"
- "Boundary Value Problems"

- "Partial Differential Equations"
- "Optimization"
- "Numerical Integration (Quadrature)"

Ordinary Differential Equations (IVP)

deval	Evaluate solution of differential equation problem
ode113	Solve non-stiff differential equations, variable order method
ode15s	Solve stiff ODEs and DAEs Index 1, variable order method
ode23	Solve non-stiff differential equations, low order method
ode23s	Solve stiff differential equations, low order method
ode23t	Solve moderately stiff ODEs and DAEs Index 1, trapezoidal
	rule
ode23tb	Solve stiff differential equations, low order method
ode45	Solve non-stiff differential equations, medium order method
odeget	Get ODE options parameters
odeset	Create/alter ODE options structure

Delay Differential Equations

dde23	Solve delay differential equations with constant delays
ddeget	Get DDE options parameters
ddeset	Create/alter DDE opt i ons structure

Boundary Value Problems

bvp4c	Solve two-point boundary value problems for ODEs by collocation
bvpget bvpset	Get BVP opti ons parameters Create/alter BVP opti ons structure
deval	Evaluate solution of differential equation problem

Partial Differential Equations

pdepe	Solve initial-boundary value problems for parabolic-elliptic
	PDEs
pdeval	Evaluates by interpolation solution computed by pdepe

Optimization

fminbnd fminsearch	Scalar bounded nonlinear function minimization Multidimensional unconstrained nonlinear minimization, by
	Nelder-Mead direct search method
fzero	Scalar nonlinear zero finding
l sqnonneg	Linear least squares with nonnegativity constraints

optimset	Create or alter optimization options structure
optimget	Get optimization parameters from options structure

Numerical Integration (Quadrature)

Numerically evaluate integral, adaptive Simpson quadrature
(low order)
Numerically evaluate integral, adaptive Lobatto quadrature
(high order)
Numerically evaluate double integral
Numerically evaluate triple integral

Specialized Math

ai ry	Airy functions
bessel h	Bessel functions of third kind (Hankel functions)
bessel i	Modified Bessel function of first kind
bessel j	Bessel function of first kind
besselk	Modified Bessel function of second kind
bessel y	Bessel function of second kind
beta	Beta function
betai nc	Incomplete beta function
betal n	Logarithm of beta function
ellipj	Jacobi elliptic functions
ellipke	Complete elliptic integrals of first and second kind
erf	Error function
erfc	Complementary error function
erfcinv	Inverse complementary error function
erfcx	Scaled complementary error function
erfinv	Inverse error function
expi nt	Exponential integral
gamma	Gamma function
gammai nc	Incomplete gamma function
gammal n	Logarithm of gamma function
legendre	Associated Legendre functions
psi	Psi (polygamma) function

Sparse Matrices

- "Elementary Sparse Matrices"
- "Full to Sparse Conversion"
- "Working with Sparse Matrices"

- "Reordering Algorithms"
- "Linear Algebra"
- "Linear Equations (Iterative Methods)"
- "Tree Operations"

Elementary Sparse Matrices

spdi ags	Sparse matrix formed from diagonals
speye	Sparse identity matrix
sprand	Sparse uniformly distributed random matrix
sprandn	Sparse normally distributed random matrix
sprandsym	Sparse random symmetric matrix

Full to Sparse Conversion

find	Find indices of nonzero elements
full	Convert sparse matrix to full matrix
sparse	Create sparse matrix
spconvert	Import from sparse matrix external format

Working with Sparse Matrices

i ssparse	True for sparse matrix
nnz	Number of nonzero matrix elements
nonzeros	Nonzero matrix elements
nzmax	Amount of storage allocated for nonzero matrix elements
spalloc	Allocate space for sparse matrix
spfun	Apply function to nonzero matrix elements
spones	Replace nonzero sparse matrix elements with ones
spparms	Set parameters for sparse matrix routines
spy	Visualize sparsity pattern

Reordering Algorithms

col amd	Column approximate minimum degree permutation
col mmd	Column minimum degree permutation
col perm	Column permutation
dmperm	Dulmage-Mendelsohn permutation
randperm	Random permutation
symamd	Symmetric approximate minimum degree permutation
symmd	Symmetric minimum degree permutation
symrcm	Symmetric reverse Cuthill-McKee permutation

Linear Algebra

chol i nc	Incomplete Cholesky factorization
condest	1-norm condition number estimate
ei gs	Eigenvalues and eigenvectors of sparse matrix
l ui nc	Incomplete LU factorization
normest	Estimate matrix 2-norm
sprank	Structural rank
svds	Singular values and vectors of sparse matrix

Linear Equations (Iterative Methods)

bi cg	BiConjugate Gradients method
bi cgstab	BiConjugate Gradients Stabilized method
cgs	Conjugate Gradients Squared method
gmres	Generalized Minimum Residual method
lsqr	LSQR implementation of Conjugate Gradients on Normal
	Equations
mi nres	Minimum Residual method
pcg	Preconditioned Conjugate Gradients method
qmr	Quasi-Minimal Residual method
spaugment	Form least squares augmented system
symmlq	Symmetric LQ method

Tree Operations

etree	Elimination tree
et reepl ot	Plot elimination tree
gpl ot	Plot graph, as in "graph theory"
symbfact	Symbolic factorization analysis
treel ayout	Lay out tree or forest
treepl ot	Plot picture of tree

Math Constants

eps	Floating-point relative accuracy
i	Imaginary unit
Inf	Infinity, ∞
j	Imaginary unit
NaN	Not-a-Number
pi	Ratio of a circle's circumference to its diameter, π
realmax	Largest positive floating-point number
realmin	Smallest positive floating-point number

Programming and Data Types

Functions to store and operate on data at either the MATLAB command line or in programs and scripts. Functions to write, manage, and execute MATLAB programs.

"Data Types"	Numeric, character, structures, cell arrays, and data type conversion
"Arrays"	Basic array operations and manipulation
"Operators and Operations"	Special characters and arithmetic, bit-wise, relational, logical, set, date and time operations
"Programming in MATLAB"	M-files, function/expression evaluation, program control, function handles, object oriented programming, error handling

Data Types

- "Numeric"
- "Characters and Strings"
- "Structures"
- "Cell Arrays"
- "Data Type Conversion"
- "Determine Data Type"

Numeric

[]	Array constructor	
cat	Concatenate arrays	
cl ass	Return object's class name (e.g., numeric)	
find	Find indices and values of nonzero array elements	
ipermute	Inverse permute dimensions of multidimensional array	
isa	Detect object of given class (e.g., numeric)	
i sequal	Determine if arrays are numerically equal	
i sequal wi thequal nansTest for equality, treating NaNs as equal		
isnumeric	Determine if item is numeric array	
i sreal	Determine if all array elements are real numbers	
permute	Rearrange dimensions of multidimensional array	

reshape	Reshape array
squeeze	Remove singleton dimensions from array
zeros	Create array of all zeros

Characters and Strings

Description of Strings in MATLAB

strings Describes MATLAB string handling

Creating and Manipulating Strings

bl anks	Create string of blanks
char	Create character array (string)
cellstr	Create cell array of strings from character array
datestr	Convert to date string format
debl ank	Strip trailing blanks from the end of string
lower	Convert string to lower case
sprintf	Write formatted data to string
sscanf	Read string under format control
strcat	String concatenation
strjust	Justify character array
strread	Read formatted data from string
strrep	String search and replace
strvcat	Vertical concatenation of strings
upper	Convert string to upper case

Comparing and Searching Strings

cl ass	Return object's class name (e.g., char)
findstr	Find string within another, longer string
i sa	Detect object of given class (e.g., char)
i scel l st r	Determine if item is cell array of strings
i schar	Determine if item is character array
i sl etter	Detect array elements that are letters of the alphabet
i sspace	Detect elements that are ASCII white spaces
regexp	Match regular expression
regexpi	Match regular expression, ignoring case
regexprep	Replace string using regular expression
strcmp	Compare strings
strcmpi	Compare strings, ignoring case
strfind	Find one string within another
strmatch	Find possible matches for string
strncmp	Compare first n characters of strings

strncmpi	Compare first n characters of strings, ignoring case
strtok	First token in string

Evaluating String Expressions

eval	Execute string containing MATLAB expression
eval c	Evaluate MATLAB expression with capture
eval i n	Execute string containing MATLAB expression in workspace

Structures

cell2struct	Cell array to structure array conversion
cl ass	Return object's class name (e.g., struct)
deal	Deal inputs to outputs
fieldnames	Field names of structure
i sa	Detect object of given class (e.g., struct)
i sequal	Determine if arrays are numerically equal
isfield	Determine if item is structure array field
isstruct	Determine if item is structure array
orderfields	Order fields of a structure array
rmfield	Remove structure fields
struct	Create structure array
struct2cell	Structure to cell array conversion

Cell Arrays

{ }	Construct cell array
cel l	Construct cell array
cellfun	Apply function to each element in cell array
cellstr	Create cell array of strings from character array
cell2mat	Convert cell array of matrices into single matrix
cell2struct	Cell array to structure array conversion
cel l di sp	Display cell array contents
cellplot	Graphically display structure of cell arrays
class	Return object's class name (e.g., cell)
deal	Deal inputs to outputs
i sa	Detect object of given class (e.g., cell)
i scel l	Determine if item is cell array
i scel l str	Determine if item is cell array of strings
i sequal	Determine if arrays are numerically equal
mat2cell	Divide matrix up into cell array of matrices
num2cell	Convert numeric array into cell array
struct2cell	Structure to cell array conversion

Data Type Conversion

Numeric

doubl e	Convert to double-precision
int8	Convert to signed 8-bit integer
int16	Convert to signed 16-bit integer
int32	Convert to signed 32-bit integer
i nt64	Convert to signed 64-bit integer
si ngl e	Convert to single-precision
ui nt 8	Convert to unsigned 8-bit integer
ui nt 16	Convert to unsigned 16-bit integer
ui nt 32	Convert to unsigned 32-bit integer
ui nt64	Convert to unsigned 64-bit integer

String to Numeric

base2dec	Convert base N number string to decimal number
bi n2dec	Convert binary number string to decimal number
hex2dec	Convert hexadecimal number string to decimal number
hex2num	Convert hexadecimal number string to double number
str2double	Convert string to double-precision number
str2num	Convert string to number

Numeric to String

char	Convert to character array (string)
dec2base	Convert decimal to base N number in string
dec2bi n	Convert decimal to binary number in string
dec2hex	Convert decimal to hexadecimal number in string
int2str	Convert integer to string
mat2str	Convert a matrix to string
num2str	Convert number to string

Other Conversions

cell2mat	Convert cell array of matrices into single matrix
cell2struct	Convert cell array to structure array
datestr	Convert serial date number to string
func2str	Convert function handle to function name string
l ogi cal	Convert numeric to logical array
mat2cell	Divide matrix up into cell array of matrices
num2cell	Convert a numeric array to cell array
str2func	Convert function name string to function handle
struct2cell	Convert structure to cell array

Determine Data Type

is*	Detect state
i sa	Detect object of given MATLAB class or Java class
i scel l	Determine if item is cell array
i scel l str	Determine if item is cell array of strings
i schar	Determine if item is character array
isfield	Determine if item is character array
i sj ava	Determine if item is Java object
i sl ogi cal	Determine if item is logical array
isnumeric	Determine if item is numeric array
i sobj ect	Determine if item is MATLAB OOPs object
isstruct	Determine if item is MATLAB structure array

Arrays

- "Array Operations"
- "Basic Array Information"
- "Array Manipulation"
- "Elementary Arrays"

Array Operations

[]	Array constructor
,	Array row element separator
;	Array column element separator
:	Specify range of array elements
end	Indicate last index of array
+	Addition or unary plus
-	Subtraction or unary minus
.*	Array multiplication
./	Array right division
. \	Array left division
. ^	Array power
.'	Array (nonconjugated) transpose

Basic Array Information

di sp	Display text or array
di spl ay	Overloaded method to display text or array
isempty	Determine if array is empty
i sequal	Determine if arrays are numerically equal
i sequal withequal nansTest for equality, treating NaNs as equal	

isnumeric	Determine if item is numeric array
i sl ogi cal	Determine if item is logical array
length	Length of vector
ndims	Number of array dimensions
numel	Number of elements in matrix or cell array
si ze	Array dimensions

Array Manipulation

:	Specify range of array elements
bl kdi ag	Construct block diagonal matrix from input arguments
cat	Concatenate arrays
ci rcshi ft	Shift array circularly
find	Find indices and values of nonzero elements
fliplr	Flip matrices left-right
fl i pud	Flip matrices up-down
flipdim	Flip array along specified dimension
horzcat	Horizontal concatenation
i nd2sub	Subscripts from linear index
ipermute	Inverse permute dimensions of multidimensional array
permute	Rearrange dimensions of multidimensional array
repmat	Replicate and tile array
reshape	Reshape array
rot90	Rotate matrix 90 degrees
shi ftdi m	Shift dimensions
sort	Sort elements in ascending order
sortrows	Sort rows in ascending order
squeeze	Remove singleton dimensions
sub2i nd	Single index from subscripts
vertcat	Horizontal concatenation

Elementary Arrays

Regularly spaced vector
Construct block diagonal matrix from input arguments
Identity matrix
Generate linearly spaced vectors
Generate logarithmically spaced vectors
Generate X and Y matrices for three-dimensional plots
Generate arrays for multidimensional functions and
interpolation
Create array of all ones
Uniformly distributed random numbers and arrays
Normally distributed random numbers and arrays
Create array of all zeros

Operators and Operations

- "Special Characters"
- "Arithmetic Operations"
- "Bit-wise Operations"
- "Relational Operations"
- "Logical Operations"
- "Set Operations"
- "Date and Time Operations"

Special Characters

:	Specify range of array elements
()	Pass function arguments, or prioritize operations
[]	Construct array
{ }	Construct cell array
	Decimal point, or structure field separator
	Continue statement to next line
,	Array row element separator
;	Array column element separator
%	Insert comment line into code
!	Command to operating system
=	Assignment

Arithmetic Operations

- + Plus
- Minus
- . Decimal point
- = Assignment
- * Matrix multiplication
- / Matrix right division
- \ Matrix left division
- ^ Matrix power
- Matrix transpose
- . * Array multiplication (element-wise)
- . / Array right division (element-wise)
- . \ Array left division (element-wise)
- . ^ Array power (element-wise)
- . ' Array transpose

Bit-wise Operations

bi t and	Bit-wise AND
bitcmp	Bit-wise complement
bi tor	Bit-wise OR
bitmax	Maximum floating-point integer
bi t set	Set bit at specified position
bi tshi ft	Bit-wise shift
bi tget	Get bit at specified position
bi t xor	Bit-wise XOR

Relational Operations

<	Less than
<=	Less than or equal to
>	Greater than
>=	Greater than or equal to
==	Equal to
~=	Not equal to
	•

Logical Operations

&&	Logical AND
	Logical OR
&	Logical AND for arrays
	Logical OR for arrays
~	Logical NOT
all	Test to determine if all elements are nonzero
any	Test for any nonzero elements
false	False array
find	Find indices and values of nonzero elements
is*	Detect state
i sa	Detect object of given class
i skeyword	Determine if string is MATLAB keyword
isvarname	Determine if string is valid variable name
l ogi cal	Convert numeric values to logical
true	True array
xor	Logical EXCLUSIVE OR

Set Operations

intersect	Set intersection of two vectors
i smember	Detect members of set
setdi ff	Return set difference of two vectors
issorted	Determine if set elements are in sorted order

setxor	Set exclusive or of two vectors
uni on	Set union of two vectors
uni que	Unique elements of vector

Date and Time Operations

cal endar	Calendar for specified month
clock	Current time as date vector
cputime	Elapsed CPU time
date	Current date string
datenum	Serial date number
datestr	Convert serial date number to string
datevec	Date components
eomday	End of month
etime	Elapsed time
now	Current date and time
tic, toc	Stopwatch timer
weekday	Day of the week

Programming in MATLAB

- "M-File Functions and Scripts"
- "Evaluation of Expressions and Functions"
- "Timer Functions"
- "Variables and Functions in Memory"
- "Control Flow"
- "Function Handles"
- "Object-Oriented Programming"
- "Error Handling"
- "MEX Programming"

M-File Functions and Scripts

()	Pass function arguments
%	Insert comment line into code
	Continue statement to next line
depfun	List dependent functions of M-file or P-file
depdi r	List dependent directories of M-file or P-file
functi on	Function M-files
i nput	Request user input

inputname	Input argument name
mfilename	Name of currently running M-file
namel engthma	x Return maximum identifier length
nargi n	Number of function input arguments
nargout	Number of function output arguments
nargchk	Check number of input arguments
nargoutchk	Validate number of output arguments
pcode	Create preparsed pseudocode file (P-file)
scri pt	Describes script M-file
varargi n	Accept variable number of arguments
varargout	Return variable number of arguments

Evaluation of Expressions and Functions

builtin	Execute builtin function from overloaded method
cellfun	Apply function to each element in cell array
eval	Interpret strings containing MATLAB expressions
eval c	Evaluate MATLAB expression with capture
eval i n	Evaluate expression in workspace
feval	Evaluate function
i skeyword	Determine if item is MATLAB keyword
isvarname	Determine if item is valid variable name
pause	Halt execution temporarily
run	Run script that is not on current path
scri pt	Describes script M-file
symvar	Determine symbolic variables in expression
tic, toc	Stopwatch timer

Timer Functions

delete	Delete timer object from memory
di sp	Display information about timer object
get	Retrieve information about timer object properties
i sval i d	Determine if timer object is valid
set	Display or set timer object properties
start	Start a timer
startat	Start a timer at a specific timer
stop	Stop a timer
timer	Create a timer object
timerfind	Return an array of all timer object in memory
wai t	Block command line until timer completes

Variables and Functions in Memory

assi gni n Assign value to workspace variable

gl obal	Define global variables
inmem	Return names of functions in memory
i sgl obal	Determine if item is global variable
mislocked	True if M-file cannot be cleared
ml ock	Prevent clearing M-file from memory
munl ock	Allow clearing M-file from memory
namel engthmax Return maximum identifier length	
pack	Consolidate workspace memory
persi stent	Define persistent variable
rehash	Refresh function and file system caches

Control Flow

break	Terminate execution of for loop or while loop
case	Case switch
catch	Begin catch block
conti nue	Pass control to next iteration of for or while loop
el se	Conditionally execute statements
el sei f	Conditionally execute statements
end	Terminate conditional statements, or indicate last index
error	Display error messages
for	Repeat statements specific number of times
if	Conditionally execute statements
otherwi se	Default part of switch statement
return	Return to invoking function
switch	Switch among several cases based on expression
try	Begin try block
while	Repeat statements indefinite number of times

Function Handles

cl ass feval functi on_hand	Return object's class name (e.g. function_handle) Evaluate function
Tunceron_nand	
	Describes function handle data type
functi ons	Return information about function handle
func2str	Constructs function name string from function handle
i sa	Detect object of given class (e.g. function_handle)
i sequal	Determine if function handles are equal
str2func	Constructs function handle from function name string

Object-Oriented Programming

MATLAB Classes and Objects

cl ass	Create object or return class of object
fieldnames	List public fields belonging to object,
inferiorto	Establish inferior class relationship
i sa	Detect object of given class
i sobj ect	Determine if item is MATLAB OOPs object
l oadobj	User-defined extension of l oad function for user objects
methods	Display method names
methodsvi ew	Displays information on all methods implemented by class
saveobj	User-defined extension of save function for user objects
subsasgn	Overloaded method for $A(I) = B$, $A\{I\} = B$, and A. fi el d=B
subsi ndex	Overloaded method for X(A)
subsref	Overloaded method for $A(I)$, $A\{I\}$ and A . field
substruct	Create structure argument for subsasgn or subsref
superi orto	Establish superior class relationship

Java Classes and Objects

cell	Convert Java array object to cell array
cl ass	Return class name of Java object
cl ear	Clear Java packages import list
depfun	List Java classes used by M-file
exi st	Detect if item is Java class
fieldnames	List public fields belonging to object
i m2j ava	Convert image to instance of Java image object
import	Add package or class to current Java import list
inmem	List names of Java classes loaded into memory
i sa	Detect object of given class
i sj ava	Determine whether object is Java object
j avaArray	Constructs Java array
javaMethod	Invokes Java method
j ava0bj ect	Constructs Java object
methods	Display methods belonging to class
methodsvi ew	Display information on all methods implemented by class
whi ch	Display package and class name for method

Error Handling

catch	Begin catch block of try/catch statement
error	Display error message
ferror	Query MATLAB about errors in file input or output

lasterr	Return last error message generated by MATLAB
lasterr or	Last error message and related information
lastwarn	Return last warning message issued by MATLAB
rethrow	Reissue error
try	Begin try block of try/catch statement
warni ng	Display warning message

MEX Programming

ode

File I/O

Functions to read and write data to files of different format types.

"Filename Construction"	Get path, directory, filename information; construct filenames
"Opening, Loading, Saving Files"	Open files; transfer data between files and MATLAB workspace
"Low-Level File I/O"	Low-level operations that use a file identifier (e.g., fopen, fseek, fread)
"Text Files"	Delimited or formatted I/O to text files
"XML Documents"	Documents written in Extensible Markup Language
"Spreadsheets"	Excel and Lotus 123 files
"Scientific Data"	CDF, FITS, HDF formats
"Audio and Audio/Video"	General audio functions; SparcStation, Wave, AVI files
"Images"	Graphics files

To see a listing of file formats that are readable from MATLAB, go to file formats.

Filename Construction

fileparts	Return parts of filename
filesep	Return directory separator for this platform
fullfile	Build full filename from parts
tempdi r	Return name of system's temporary directory
tempname	Return unique string for use as temporary filename

Opening, Loading, Saving Files

importdata	Load data from various types of files
load	Load all or specific data from MAT or ASCII file
open	Open files of various types using appropriate editor or program
save	Save all or specific data to MAT or ASCII file
wi nopen	Open file in appropriate application (Windows only)

Low-Level File I/O

fclose	Close one or more open files
feof	Test for end-of-file
ferror	Query MATLAB about errors in file input or output
fgetl	Return next line of file as string without line terminator(s)
fgets	Return next line of file as string with line terminator(s)
fopen	Open file or obtain information about open files
fprintf	Write formatted data to file
fread	Read binary data from file
frewind	Rewind open file
fscanf	Read formatted data from file
fseek	Set file position indicator
ftell	Get file position indicator
fwrite	Write binary data to file

Text Files

csvread	Read numeric data from text file, using comma delimiter
csvwrite	Write numeric data to text file, using comma delimiter
dl mread	Read numeric data from text file, specifying your own delimiter
dlmwrite	Write numeric data to text file, specifying your own delimiter
textread	Read data from text file, specifying format for each value

XML Documents

xml read	Parse XML document
xml write	Serialize XML Document Object Model node
xslt	Transform XML document using XSLT engine

Spreadsheets

Microsoft Excel Functions

xl sfi nfo	Determine if file contains Microsoft Excel (. xl s) spreadsheet
xl sread	Read Microsoft Excel spreadsheet file (. xl s)

Lotus123 Functions

wk1read	Read Lotus123 WK1 spreadsheet file into matrix
wk1write	Write matrix to Lotus123 WK1 spreadsheet file

Scientific Data

Common Data Format (CDF)

cdfinfo	Return information about CDF file
cdfread	Read CDF file

Flexible Image Transport System

fitsinfoReturn information about FITS filefitsreadRead FITS file

Hierarchical Data Format (HDF)

hdf	Interface to HDF files
hdfinfo	Return information about HDF or HDF-EOS file
hdfread	Read HDF file

Audio and Audio/Video

General

	Create audio player object
audi orecorder	Perform real-time audio capture
beep	Produce beep sound
lin2mu	Convert linear audio signal to mu-law
mu2lin	Convert mu-law audio signal to linear
sound	Convert vector into sound
soundsc	Scale data and play as sound

SPARCstation-Specific Sound Functions

auread	Read NeXT/SUN (. au) sound file
auwrite	Write NeXT/SUN (. au) sound file

Microsoft WAVE Sound Functions

wavpl ay	Play sound on PC-based audio output device
wavread	Read Microsoft WAVE (. wav) sound file
wavrecord	Record sound using PC-based audio input device
wavwrite	Write Microsoft WAVE (. wav) sound file

Audio Video Interleaved (AVI) Functions

addframe	Add frame to AVI file
avifile	Create new AVI file
avi i nfo	Return information about AVI file
avi read	Read AVI file
close	Close AVI file
movi e2avi	Create AVI movie from MATLAB movie

Images

i m2j ava	Convert image to instance of Java image object
imfinfo	Return information about graphics file
imread	Read image from graphics file
imwrite	Write image to graphics file

Graphics

2-D graphs, specialized plots (e.g., pie charts, histograms, and contour plots), function plotters, and Handle Graphics functions.

Basic Plots and Graphs	Linear line plots, log and semilog plots
Annotating Plots	Titles, axes labels, legends, mathematical symbols
Specialized Plotting	Bar graphs, histograms, pie charts, contour plots, function plotters
Bit-Mapped Images	Display image object, read and write graphics file, convert to movie frames
Printing	Printing and exporting figures to standard formats
Handle Graphics	Creating graphics objects, setting properties, finding handles

Basic Plots and Graphs

box	Axis box for 2-D and 3-D plots
errorbar	Plot graph with error bars
hol d	Hold current graph
Li neSpec	Line specification syntax
l ogl og	Plot using log-log scales
pol ar	Polar coordinate plot
pl ot	Plot vectors or matrices.
pl ot 3	Plot lines and points in 3-D space
pl ot yy	Plot graphs with Y tick labels on the left and right
semi l ogx	Semi-log scale plot
semi l ogy	Semi-log scale plot
subpl ot	Create axes in tiled positions

Annotating Plots

cl abel	Add contour labels to contour plot
dateti ck	Date formatted tick labels
gtext	Place text on 2-D graph using mouse
legend	Graph legend for lines and patches
texl abel	Produce the TeX format from character string

title	Titles for 2-D and 3-D plots
xl abel	X-axis labels for 2-D and 3-D plots
yl abel	Y-axis labels for 2-D and 3-D plots
zl abel	Z-axis labels for 3-D plots

Specialized Plotting

- "Area, Bar, and Pie Plots"
- "Contour Plots"
- "Direction and Velocity Plots"
- "Discrete Data Plots"
- "Function Plots"
- "Histograms"
- "Polygons and Surfaces"
- "Scatter Plots"
- "Animation"

Area, Bar, and Pie Plots

area	Area plot
bar	Vertical bar chart
barh	Horizontal bar chart
bar3	Vertical 3-D bar chart
bar3h	Horizontal 3-D bar chart
pareto	Pareto char
pi e	Pie plot
pi e3	3-D pie plot

Contour Plots

contour	Contour (level curves) plot
contour3	3-D contour plot
contourc	Contour computation
contourf	Filled contour plot
ezcontour	Easy to use contour plotter
ezcontourf	Easy to use filled contour plotter

Direction and Velocity Plots

comet	Comet plot
comet3	3-D comet plot

compass	Compass plot
feather	Feather plot
qui ver	Quiver (or velocity) plot
qui ver3	3-D quiver (or velocity) plot

Discrete Data Plots

stem	Plot discrete sequence data
stem3	Plot discrete surface data
stairs	Stairstep graph

Function Plots

ezcontour	Easy to use contour plotter
ezcontourf	Easy to use filled contour plotter
ezmesh	Easy to use 3-D mesh plotter
ezmeshc	Easy to use combination mesh/contour plotter
ezpl ot	Easy to use function plotter
ezpl ot 3	Easy to use 3-D parametric curve plotter
ezpol ar	Easy to use polar coordinate plotter
ezsurf	Easy to use 3-D colored surface plotter
ezsurfc	Easy to use combination surface/contour plotter
fplot	Plot a function

Histograms

hi st	Plot histograms
hi stc	Histogram count
rose	Plot rose or angle histogram

Polygons and Surfaces

convhul l	Convex hull
cyl i nder	Generate cylinder
del aunay	Delaunay triangulation
dsearch	Search Delaunay triangulation for nearest point
el l i psoi d	Generate ellipsoid
fill	Draw filled 2-D polygons
fill3	Draw filled 3-D polygons in 3-space
i npol ygon	True for points inside a polygonal region
pcol or	Pseudocolor (checkerboard) plot
pol yarea	Area of polygon
ri bbon	Ribbon plot
sl i ce	Volumetric slice plot
sphere	Generate sphere

tsearch	Search for enclosing Delaunay triangle
voronoi	Voronoi diagram
waterfall	Waterfall plot

Scatter Plots

pl otmatri x	Scatter plot matrix
scatter	Scatter plot
scatter3	3-D scatter plot

Animation

frame2im	Convert movie frame to indexed image
getframe	Capture movie frame
im2frame	Convert image to movie frame
movi e	Play recorded movie frames
noanimate	Change EraseMode of all objects to normal

Bit-Mapped Images

frame2im	Convert movie frame to indexed image
image	Display image object
imagesc	Scale data and display image object
imfinfo	Information about graphics file
imformats	Manage file format registry
im2frame	Convert image to movie frame
im2java	Convert image to instance of Java image object
imread	Read image from graphics file
imwrite	Write image to graphics file
i nd2rgb	Convert indexed image to RGB image

Printing

frameedit	Edit print frame for Simulink and Stateflow diagram
ori ent	Hardcopy paper orientation
pageset updl g	Page position dialog box
pri nt	Print graph or save graph to file
pri ntdl g	Print dialog box
pri ntopt	Configure local printer defaults
pri ntprevi ew	Preview figure to be printed
saveas	Save figure to graphic file

Handle Graphics

- Finding and Identifying Graphics Objects
- Object Creation Functions
- Figure Windows
- Axes Operations

Finding and Identifying Graphics Objects

•	
al l chi l d	Find all children of specified objects
copyobj	Make copy of graphics object and its children
delete	Delete files or graphics objects
findall	Find all graphics objects (including hidden handles)
figflag	Test if figure is on screen
findfigs	Display off-screen visible figure windows
fi ndobj	Find objects with specified property values
gca	Get current Axes handle
gcbo	Return object whose callback is currently executing
gcbf	Return handle of figure containing callback object
gco	Return handle of current object
get	Get object properties
i shandl e	True if value is valid object handle
set	Set object properties

Object Creation Functions

axes	Create axes object
figure	Create figure (graph) windows
image	Create image (2-D matrix)
l i ght	Create light object (illuminates Patch and Surface)
line	Create line object (3-D polylines)
patch	Create patch object (polygons)
rectangl e	Create rectangle object (2-D rectangle)
rootobj ect	List of root properties
surface	Create surface (quadrilaterals)
text	Create text object (character strings)
uicontextmenu	Create context menu (popup associated with object)

Figure Windows

capture	Screen capture of the current figure
clc	Clear figure window
clf	Clear figure

close	Close specified window
closereq	Default close request function
drawnow	Complete any pending drawing
figflag	Test if figure is on screen
gcf	Get current figure handle
hgl oad	Load graphics object hierarchy from a FIG-file
hgsave	Save graphics object hierarchy to a FIG-file
newpl ot	Graphics M-file preamble for NextPl ot property
opengl	Change automatic selection mode of OpenGL rendering
refresh	Refresh figure
saveas	Save figure or model to desired output format

Axes Operations

axi s	Plot axis scaling and appearance
box	Display axes border
cla	Clear Axes
gca	Get current Axes handle
gri d	Grid lines for 2-D and 3-D plots
i shol d	Get the current hold state

3-D Visualization

Create and manipulate graphics that display 2-D matrix and 3-D volume data, controlling the view, lighting and transparency.

Surface and Mesh Plots	Plot matrices, visualize functions of two variables, specify colormap
View Control	Control the camera viewpoint, zooming, rotation, aspect ratio, set axis limits
Lighting	Add and control scene lighting
Transparency	Specify and control object transparency
Volume Visualization	Visualize gridded volume data

Surface and Mesh Plots

- Creating Surfaces and Meshes
- Domain Generation
- Color Operations
- Colormaps

Creating Surfaces and Meshes

hi dden	Mesh hidden line removal mode
meshc	Combination mesh/contourplot
mesh	3-D mesh with reference plane
peaks	A sample function of two variables
surf	3-D shaded surface graph
surface	Create surface low-level objects
surfc	Combination surf/contourplot
surfl	3-D shaded surface with lighting
tetramesh	Tetrahedron mesh plot
trimesh	Triangular mesh plot
tri pl ot	2-D triangular plot
trisurf	Triangular surface plot

Domain Generation

gri ddata	Data gridding and surface fitting
meshgri d	Generation of X and Y arrays for 3-D plots

Color Operations

bri ght en	Brighten or darken color map
caxi s	Pseudocolor axis scaling
col ormapedit	orStart colormap editor
col orbar	Display color bar (color scale)
col ordef	Set up color defaults
col ormap	Set the color look-up table (list of colormaps)
Col or Spec	Ways to specify color
graymon	Graphics figure defaults set for grayscale monitor
hsv2rgb	Hue-saturation-value to red-green-blue conversion
rgb2hsv	RGB to HSVconversion
rgbpl ot	Plot color map
shadi ng	Color shading mode
spinmap	Spin the colormap
surfnorm	3-D surface normals
whitebg	Change axes background color for plots

Colormaps

autumn	Shades of red and yellow color map
bone	Gray-scale with a tinge of blue color map
contrast	Gray color map to enhance image contrast
cool	Shades of cyan and magenta color map
copper	Linear copper-tone color map
flag	Alternating red, white, blue, and black color map
gray	Linear gray-scale color map
hot	Black-red-yellow-white color map
hsv	Hue-saturation-value (HSV) color map
j et	Variant of HSV
lines	Line color colormap
pri sm	Colormap of prism colors
spri ng	Shades of magenta and yellow color map
summer	Shades of green and yellow colormap
winter	Shades of blue and green color map

View Control

- Controlling the Camera Viewpoint
- Setting the Aspect Ratio and Axis Limits
- Object Manipulation
- Selecting Region of Interest

Controlling the Camera Viewpoint

camdolly	Move camera position and target
caml ookat	View specific objects
camorbi t	Orbit about camera target
campan	Rotate camera target about camera position
campos	Set or get camera position
camproj	Set or get projection type
camroll	Rotate camera about viewing axis
camtarget	Set or get camera target
camup	Set or get camera up-vector
camva	Set or get camera view angle
camzoom	Zoom camera in or out
vi ew	3-D graph viewpoint specification.
viewmtx	Generate view transformation matrices

Setting the Aspect Ratio and Axis Limits

daspect	Set or get data aspect ratio
pbaspect	Set or get plot box aspect ratio
xl i m	Set or get the current <i>x</i> -axis limits
ylim	Set or get the current <i>y</i> -axis limits
zlim	Set or get the current <i>z</i> -axis limits

Object Manipulation

reset	Reset axis or figure	
rotate	Rotate objects about specified origin and direction	
rotate3d	Interactively rotate the view of a 3-D plot	
sel ectmoveresi zeInteractively select, move, or resize objects		
zoom	Zoom in and out on a 2-D plot	

Selecting Region of Interest

dragrect	Drag XOR rectangles with mouse
rbbox	Rubberband box

Lighting

Cerate or position Light
Light object creation function
Position light in sphereical coordinates
Lighting mode
Material reflectance mode

Transparency

al pha	Set or query transparency properties for objects in current axes
al phamap	Specify the figure alphamap
alim	Set or query the axes alpha limits

Volume Visualization

curl di vergence fl ow	Plot velocity vectors as cones in 3-D vector field Draw contours in volume slice plane Compute curl and angular velocity of vector field Compute divergence of vector field Generate scalar volume data speedInterpolate streamline vertices from vector-field magnitudes	
i socaps	Compute isosurface end-cap geometry	
i socol ors	Compute colors of isosurface vertices	
i sonormal s	Compute normals of isosurface vertices	
isosurface	Extract isosurface data from volume data	
reducepatch	Reduce number of patch faces	
reducevol ume	Reduce number of elements in volume data set	
shrinkfaces	Reduce size of patch faces	
sl i ce	Draw slice planes in volume	
smooth3	Smooth 3-D data	
stream2	Compute 2-D stream line data	
stream3	Compute 3-D stream line data	
streaml i ne	Draw stream lines from 2- or 3-D vector data	
streamparticlesDraws stream particles from vector volume data		
streamri bbon	Draws stream ribbons from vector volume data	
streamslice	Draws well-spaced stream lines from vector volume data	
streamtube	Draws stream tubes from vector volume data	
surf2patch	Convert surface data to patch data	
subvol ume	Extract subset of volume data set	
vol umebounds	Return coordinate and color limits for volume (scalar and vector)	

Creating Graphical User Interfaces

Predefined dialog boxes and functions to control GUI programs.

Due de Gue d'Diele et Desse	Diale a barres for some second south and the assess
Predefined Dialog Boxes	Dialog boxes for error, user input, waiting, etc.
Deploying User Interfaces	Launching GUIs, creating the handles structure
Developing User Interfaces	Starting GUIDE, managing application data, getting user input
User Interface Objects	Creating GUI components
Finding Objects from Callbacks	Finding object handles from within callbacks functions
GUI Utility Functions	Moving objects, text wrapping
Controlling Program Execution	Wait and resume based on user input

Predefined Dialog Boxes

di al og	Create dialog box
errordl g	Create error dialog box
hel pdl g	Display help dialog box
i nput dl g	Create input dialog box
listdlg	Create list selection dialog box
msgbox	Create message dialog box
pagedl g	Display page layout dialog box
pri nt dl g	Display print dialog box
quest dl g	Create question dialog box
ui get di r	Display dialog box to retrieve name of directory
uigetfile	Display dialog box to retrieve name of file for reading
uiputfile	Display dialog box to retrieve name of file for writing
ui set col or	Set Col or Spec using dialog box
ui setfont	Set font using dialog box
wai tbar	Display wait bar
warndl g	Create warning dialog box

Deploying User Interfaces

gui dat a	Store or retrieve application data
gui handl es	Create a structure of handles
movegui	Move GUI figure onscreen
openfi g	Open or raise GUI figure

Developing User Interfaces

gui de	Open GUI Layout Editor
i nspect	Display Property Inspector

Working with Application Data

getappdata	Get value of application data
i sappdata	True if application data exists
rmappdata	Remove application data
setappdata	Specify application data

Interactive User Input

gi nput Graphical input from a mouse or cursor waitfor Wait for conditions before resuming execution waitforbuttonpressWait for key/buttonpress over figure

User Interface Objects

menuGenerate menu of choices for user inputui contextmenuCreate context menuui controlCreate user interface controlui menuCreate user interface menu

Finding Objects from Callbacks

findall	Find all graphics objects
findfigs	Display off-screen visible figure windows
findobj	Find specific graphics object
gcbf	Return handle of figure containing callback object
gcbo	Return handle of object whose callback is executing

GUI Utility Functions

selectmoveres	si zeSelect, move, resize, or copy axes and uicontrol graphics
	objects
textwrap	Return wrapped string matrix for given uicontrol

Controlling Program Execution

ui resume	Resumes program execution halted with ui wai t
ui wai t	Halts program execution, restart with ui resume

Functions – Alphabetical List

pack	2-12
pagedlg	2-14
pagesetupdlg	2-15
pareto	2-16
partialpath	2-17
pascal	2-18
patch	2-19
Patch Properties	2-31
path	2-49
path2rc	2-51
pathtool	2-52
pause	2-53
pbaspect	2-54
pcg	2-59
pchip	2-63
pcode	2-65
pcolor	2-66
pdepe	2-69
pdeval	2-80
peaks	2-81
perl	2-82
perms	2-83
permute	2-84
persistent	2-85
pi	2-86
pie	2-87
pie3	2-89
r · · · · · · · · · · · · · · · · · · ·	2-91
planerot	2-94
plot	2-95
plot3 2	-100
plotedit	-102
plotmatrix	-104
plotyy 2	-106
pol2cart 2	-108
polar 2	-109
poly 2	-111

polyarea	2-113
polyder	2-114
polyeig	2-115
polyfit	2-117
polyint	2-120
polyval	2-121
polyvalm	2-123
pow2	2-125
ppval	2-126
prefdir	2-127
primes	2-128
print, printopt	2-129
printdlg	2-143
printpreview	2-144
prod	2-145
profile	2-146
profreport	2-150
propedit	2-152
propedit (COM)	2-154
psi	2-155
pwd	2-157
qmr	2-158
qr	2-162
qrdelete	2-166
qrinsert	2-168
qrupdate	2-170
quad, quad8	2-173
quadl	2-175
questdlg	2-177
quit	2-179
quiver	2-181
quiver3	2-184
qz	2-186
rand	2-188
randn	2-190
randperm	2-192
rank	2-193

rat, rats	2-194
rbbox	2-197
rcond	2-199
readasync	2-135 2-200
real	2-202
reallog	2-203
realmax	2-203
realmin	2-205
	2-205
realpow	
realsqrt	2-207
record	2-208
rectangle	2-210
rectangle properties	2-217
rectint	2-224
reducepatch	2-225
reducevolume	2-229
refresh	2-231
regexp	2-232
regexpi	2-235
regexprep	2-237
registerevent (COM)	2-239
rehash	2-241
release (COM)	2-243
rem	2-245
repmat	2-246
reset	2-247
reshape	2-248
residue	2-250
rethrow	2-253
return	2-254
rgb2hsv	2-255
rgbplot	2-256
ribbon	2-257
rmappdata	2-259
rmdir	2-260
rmfield	2-263
rmpath	2-264
F	

	0 F
root object	••
Root Properties 2-2	
roots	
rose	76
rosser	78
rot90 2-2	79
rotate	80
rotate3d 2-2	82
round 2-2	83
rref 2-2	84
rsf2csf 2-2	86
run 2-2	88
runtime	89
save	90
save (COM) 2-2	93
save (serial)	94
saveas	96
saveobj 2-2	99
scatter 2-3	00
scatter3 2-3	02
schur	04
script 2-3	06
sec 2-3	07
sech	09
selectmoveresize 2-3	11
semilogx, semilogy 2-3	12
send (COM)	14
sendmail	15
serial	16
serialbreak	18
set	19
set (COM)	22
set (serial) 2-3	23
set (timer) 2-3	25
setappdata 2-3	28
setdiff	29
setfield 2-3	30

setstr	2-332
setxor	2-333
shading	2-334
shiftdim	2-337
shrinkfaces	2-338
sign	2-342
sin	2-343
single	2-345
sinh	2-346
size	2-348
size (serial)	2-351
slice	2-352
smooth3	2-357
sort	2-359
sortrows	2-361
sound	2-362
soundsc	2-363
spalloc	2-364
sparse	2-365
spaugment	2-367
spconvert	2-368
spdiags	2-370
speye	2-373
spfun	2-374
sph2cart	2-376
sphere	2-377
spinmap	2-379
spline	2-380
spones	2-384
spparms	2-385
sprand	2-388
sprandn	2-389
sprandsym	2-390
sprank	2-391
sprintf	2-392
spy	2-398
sqrt	2-400

sqrtm	2-401
squeeze	2-404
sscanf	2-405
stairs	2-408
start	2-410
startat	2-411
std	2-413
	2-415
	2-417
stop	2-419
scopasjie i i i i i i i i i i i i i i i i i i	2-420
	2-421
	2-422
str2mat	2-423
	2-424
	2-425
Γ	2-427
I	2-429
	2-430
	2-432
	2-434
F	2-436
	2-440
	2-446
streamtube	2-451
strfind	2-455
5011165	2-456
Juse	2-458
strmatch	2-459
strncmp	2-460
strncmpi	2-461
strread	2-462
strrep	2-466
strtok	2-467
struct	2-468
struct2cell	2-470
strvcat	2-471

sub2ind	2-472
subplot	2-474
subsasgn	2-476
subsindex	2-477
subspace	2-479
subsref	2-480
substruct	2-481
subvolume	2-482
sum	2-484
superiorto	2-485
support	2-486
surf, surfc	2-487
surf2patch	2-491
surface	2-493
Surface Properties	2-501
surfl	2-515
surfnorm	2-518
svd	2-520
svds	2-523
switch	2-525
symamd	2-527
symbfact	2-529
symmlq	2-530
symmmd	2-534
symrcm	2-536
symvar	2-538
startup	2-539
system	2-540
tan	2-541
tanh	2-543
tempdir	2-545
tempname	2-546
terminal	2-547
tetramesh	2-549
texlabel	2-552
text	2-554
Text Properties	2-562

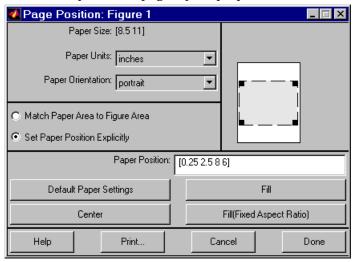
textread	2-579
textwrap	2-584
tic, toc	2-585
timer	2-586
timerfind	2-591
title	2-593
toeplitz	2-595
trace	2-596
trapz	2-597
treelayout	2-599
treeplot	2-600
tril	2-601
trimesh	2-602
triplequad	2-603
triplot	2-605
trisurf	2-607
triu	2-608
true	2-609
try	2-610
tsearch	2-611
tsearchn	2-612
type	2-613
uicontextmenu	2-614
uicontextmenu Properties	2-617
uicontrol	2-622
Uicontrol Properties	2-630
uigetdir	2-644
uigetfile	2-648
uiimport	2-654
uimenu	2-655
Uimenu Properties	2-659
uint8, uint16, uint32, uint64	2-666
uiputfile	2-668
uiresume, uiwait	2-673
uisetcolor	2-674
uisetfont	2-675
uistack	2-677

	2-677
undocheckout	2-678
union	2-679
unique	2-680
unix	2-682
unmkpp	2-683
unregisterallevents (COM)	2-684
unregisterevent (COM)	2-686
unwrap	2-688
unzip	2-692
upper	2-693
urlread	2-694
urlwrite	2-695
usejava	2-696
vander	2-697
var	2-698
varargin, varargout	2-699
vectorize	2-701
ver	2-702
verctrl	2-704
version	2-708
vertcat	2-709
view	2-711
viewmtx	2-714
volumebounds	2-718
voronoi	2-720
voronoin	2-724
wait	2-727
waitbar	2-728
waitfor	2-730
waitforbuttonpress	2-731
warndlg	2-732
warning	2-733
waterfall	2-737
wavplay	2-739
wavread	2-741
wavrecord	2-742

wavwrite	2-743
web	2-744
weekday	2-746
what	2-747
whatsnew	2-749
which	2-750
while	2-753
whitebg	2-756
who, whos	2-757
wilkinson	2-759
winopen	2-760
wk1read	2-761
wk1write	2-762
workspace	2-763
xlabel, ylabel, zlabel	2-764
xlim, ylim, zlim	2-766
xlsfinfo	2-768
xlsread	2-769
xmlread	2-773
xmlwrite	2-774
xor	2-775
xslt	2-776
zeros	2-777
zip	2-778
zoom	2-780

pack

Purpose	Consolidate workspace memory
Syntax	pack pack filename pack('filename')
Description	pack frees up needed space by reorganizing information so it only uses the minimum memory required. You must run pack from a directory for which you have write permission. Running pack clears all variables not in the base workspace, so persistent variables, for example, will be cleared.
	pack filename accepts an optional filename for the temporary file used to hold the variables. Otherwise, it uses the file named pack.tmp. You must run pack from a directory for which you have write permission.
	<pre>pack('filename') is the function form of pack.</pre>
Remarks	The pack function does not affect the amount of memory allocated to the MATLAB process. You must quit MATLAB to free up this memory.
	Since MATLAB uses a heap method of memory management, extended MATLAB sessions may cause memory to become fragmented. When memory is fragmented, there may be plenty of free space, but not enough contiguous memory to store a new large variable.
	If you get the Out of memory message from MATLAB, the pack function may find you some free memory without forcing you to delete variables.
	The pack function frees space by:
	 Saving all variables in the base workspace to disk in a temporary file called pack. tmp
	 Clearing all variables and functions from memory
	 Reloading the base workspace variables back from pack. tmp
	• Deleting the temporary file pack. tmp


	If you use pack and there is still not enough free memory to proceed, you must clear some variables. If you run out of memory often, you can allocate larger matrices earlier in the MATLAB session and use these system-specific tips:
	UNIX: Ask your system manager to increase your swap space.Windows: Increase virtual memory using the Windows Control Panel.
	To maintain persistent variables when you run pack, use ${\tt ml} \ {\tt ock}$ in the function.
Examples	Change the current directory to one that is writable, run pack, and return to the previous directory.
	<pre>cwd = pwd; cd(tempdir); pack cd(cwd)</pre>
See Also	clear

pagedlg

Purpose This function is obsolete. Use pageset updl g to display the page setup dialog.

Syntax pagedl g pagedl g(fig)

Description pagedl g displays a page position dialog box for the current figure. The dialog box enables you to set page layout properties.

 $pagedl\,g(fi\,g)\,$ displays a page position dialog box for the figure identified by the handle fig.

- **Remarks** This dialog box enables you to set figure properties that determine how MATLAB lays out the figure on the printed paper. See the dialog box help for more information.
- **See Also** The figure properties PaperPosition, PaperOrientation, PaperUnits

Purpose	Page position dialog box
Syntax	dlg = pagesetupdlg(fig)
Description	dl g = pagesetupdl g(fig) creates a dialog box from which a set of pagelayout properties for the figure window, fig, can be set.

pagesetupdl g implements the "Page Setup..." option in the Figure File Menu.

Unlike pagedl g, pageset updl g currently only supports setting the layout for a single figure. fig must be a single figure handle, not a vector of figures or a simulink diagram.

Page Setup - Figure 1 🛛 🗙								
Size and Position	Paper	Lines and Text	Axes and Figure					
Mode Use screen size, centered on page Use manual size and position Manual size and position Top: 2.50 Use defaults Left: 0.25 Fill page Width: 8.00 Fix aspect ratio Height: 6.00 Center Units: inches								
Help			OK Cancel					

See Also

pagedl g, pri ntprevi ew, pri ntopt

pareto

Purpose	Pareto chart
Syntax	<pre>pareto(Y) pareto(Y, names) pareto(Y, X) H = pareto()</pre>
Description	Pareto charts display the values in the vector Y as bars drawn in descending order.
	pareto(Y) labels each bar with its element index in Y.
	pareto(Y, names) labels each bar with the associated name in the string matrix or cell array names.
	pareto(Y, X) labels each bar with the associated value from X.
	H = pareto() returns a combination of patch and line object handles.
See Also	hist, bar

partialpath

Purpose	pathname						
Description	A partial pathname is a pathname relative to the MATLAB path, matl abpath. It is used to locate private and method files, which are usually hidden, or to restrict the search for files when more than one file with the given name exists.						
	A partial pathname contains the last component, or last several components, of the full pathname separated by /. For example, matfun/trace, pri vate/children, inline/formula, and demos/clown. mat are valid partial pathnames. Specifying the @ in method directory names is optional, so funfun/inline/formula is also a valid partial pathname.						
	artial pathnames make it easy to find toolbox or MATLAB relative files on ur path, independent of the location where MATLAB is installed.						
	Many commands accept partial pathnames instead of a full pathname. Some of these commands are						
	help, type, load, exist, what, which, edit, dbtype, dbstop, dbclear, and fopen						
Examples	The following examples use partial pathnames:						
	what funfun/inline						
	M-files in directory matlabroot\tool box\matlab\funfun\@inline argnames disp feval inline subsref vertcat cat display formula nargin symvar char exist horzcat nargout vectorize which funfun/inline/formula matlabroot\tool box\matlab\funfun\@inline\formula.m % inline method						
See Also	matl abroot, path						

pascal

Purpose	Pascal matrix							
Syntax	A = pascal (n) A = pascal (n, 1) A = pascal (n, 2)							
Description	A = pascal (n) returns the Pascal matrix of order n: a symmetric positive definite matrix with integer entries taken from Pascal's triangle. The inverse of A has integer entries.							
	-		(n, 1) returns the lower triangular Cholesky factor (up to the signs nns) of the Pascal matrix. It is <i>involutary</i> , that is, it is its own					
	A = pascal $(n, 2)$ returns a transposed and permuted version of pascal $(n, 1)$. A is a cube root of the identity matrix.							
Examples	pascal (4) returns							
	1	1	1	1				
	1	2	1 3 6	4				
	1	3	6	10				
	1	4	10	20				
	A = pascal(3, 2) produces							
	A =							
		1	1 - 1	1				
	-							
		1	0	0				
See Also	chol							

Purpose	Create patch graphics object
Syntax	<pre>patch(X, Y, C) patch(X, Y, Z, C) patch(FV) patch(' PropertyName', PropertyValue) patch('PropertyName', PropertyValue) PN/PV pairs only handle = patch()</pre>
Description	patch is the low-level graphics function for creating patch graphics objects. A patch object is one or more polygons defined by the coordinates of its vertices. You can specify the coloring and lighting of the patch. See the Creating 3-D Models with Patches for more information on using patch objects.
	patch(X, Y, C) adds the filled two-dimensional patch to the current axes. The elements of X and Y specify the vertices of a polygon. If X and Y are matrices, MATLAB draws one polygon per column. C determines the color of the patch. It can be a single Col orSpec, one color per face, or one color per vertex (see "Remarks"). If C is a 1-by-3 vector, it is assumed to be an RGB triplet, specifying a color directly.
	patch(X, Y, Z, C) creates a patch in three-dimensional coordinates.
	patch(FV) creates a patch using structure FV, which contains the fields verti ces, faces, and optionally facevertecdata. These fields correspond to the Verti ces, Faces, and FaceVertexCData patch properties.
	patch(' <i>PropertyName</i> ', PropertyValue) follows the X, Y, (Z), and C arguments with property name/property value pairs to specify additional patch properties.
	patch(' <i>PropertyName</i> ', PropertyValue,) specifies all properties using property name/property value pairs. This form enables you to omit the color specification because MATLAB uses the default face color and edge color, unless you explicitly assign a value to the FaceCol or and EdgeCol or properties. This form also allows you to specify the patch using the Faces and Verti ces properties instead of <i>x</i> -, <i>y</i> -, and <i>z</i> -coordinates. See the "Examples" section for more information.

patch

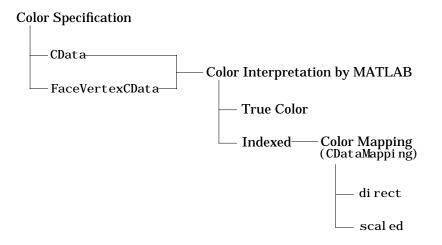
handle = patch(...) returns the handle of the patch object it creates.

Remarks Unlike high-level area creation functions, such as fill or area, patch does not check the settings of the figure and axes NextPl ot properties. It simply adds the patch object to the current axes.

If the coordinate data does not define closed polygons, patch closes the polygons. The data can define concave or intersecting polygons. However, if the edges of an individual patch face intersect themselves, the resulting face may or may not be completely filled. In that case, it is better to break up the face into smaller polygons.

Specifying Patch Properties

You can specify properties as property name/property value pairs, structure arrays, and cell arrays (see the set and get reference pages for examples of how to specify these data types).


There are two patch properties that specify color:

- CData use when specifying x-, y-, and z-coordinates (XData, YData, ZData).
- FaceVertexCData use when specifying vertices and connection matrix (Vertices and Faces).

The CData and FaceVertexCData properties accept color data as indexed or true color (RGB) values. See the CData and FaceVertexCData property descriptions for information on how to specify color.

Indexed color data can represent either direct indices into the colormap or scaled values that map the data linearly to the entire colormap (see the caxi s

function for more information on this scaling). The CDataMapping property determines how MATLAB interprets indexed color data.

Color Data Interpretation

You can specify patch colors as:

- A single color for all faces
- One color for each face enabling flat coloring
- One color for each vertex enabling interpolated coloring

The following tables summarize how MATLAB interprets color data defined by the CData and FaceVertexCData properties.

Interpretation of the CData Property

[X,Y,Z]Data	CData Red	quired for	Results Obtained
Dimensions	Indexed	True Color	
m-by-n	scalar	1-by-1-by-3	Use the single color specified for all patch faces. Edges can be only a single color.

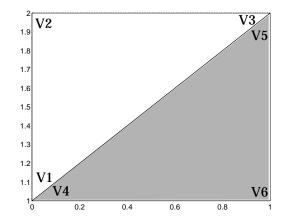
patch

[X,Y,Z]Data Dimensions	CData Red Indexed	quired for True Color	Results Obtained
m-by-n	1-by-n (n >= 4)	1-by-n-by-3	Use one color for each patch face. Edges can be only a single color.
m-by-n	m-by-n	m-by-n-3	Assign a color to each vertex. patch faces can be flat (a single color) or interpolated. Edges can be flat or interpolated.

Interpretation of the FaceVertexCData Property

Vertices	Faces	FaceVerte Required		Results Obtained
Dimensions	Dimensions	Indexed	True Color	
m-by-n	k-by-3	scalar	1-by-3	Use the single color specified for all patch faces. Edges can be only a single color.
m-by-n	k-by-3	k-by-1	k-by-3	Use one color for each patch face. Edges can be only a single color.
m-by-n	k-by-3	m-by-1	m-by-3	Assign a color to each vertex. patch faces can be flat (a single color) or interpolated. Edges can be flat or interpolated.

Examples


This example creates a patch object using two different methods:

- Specifying *x*-, *y*-, and *z*-coordinates and color data (XData, YData, ZData, and CData properties).
- Specifying vertices, the connection matrix, and color data (Vertices, Faces, FaceVertexCData, and FaceCol or properties).

Specifying X, Y, and Z Coordinates

The first approach specifies the coordinates of each vertex. In this example, the coordinate data defines two triangular faces, each having three vertices. Using true color, the top face is set to white and the bottom face to gray.

 $\begin{array}{l} x \ = \ [0 \ 0; 0 \ 1; 1 \ 1]; \\ y \ = \ [1 \ 1; 2 \ 2; 2 \ 1]; \\ z \ = \ [1 \ 1; 1 \ 1; 1 \ 1]; \\ t \ col \ or (1, 1, 1; 3) \ = \ [1 \ 1 \ 1]; \\ t \ col \ or (1, 2, 1; 3) \ = \ [. 7 \ . 7 \ . 7]; \\ patch(x, y, z, t \ col \ or) \end{array}$

Notice that each face shares two vertices with the other face (V_1 - V_4 and V_3 - V_5).

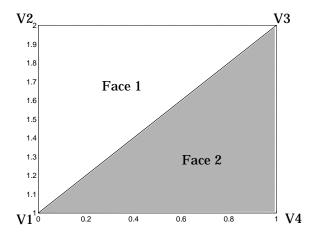
Specifying Vertices and Faces

The Vertices property contains the coordinates of each *unique* vertex defining the patch. The Faces property specifies how to connect these vertices to form each face of the patch. For this example, two vertices share the same location so you need to specify only four of the six vertices. Each row contains the *x*, *y*, and *z*-coordinates of each vertex.

vert = $[0 \ 1 \ 1; 0 \ 2 \ 1; 1 \ 2 \ 1; 1 \ 1 \ 1];$

There are only two faces, defined by connecting the vertices in the order indicated.

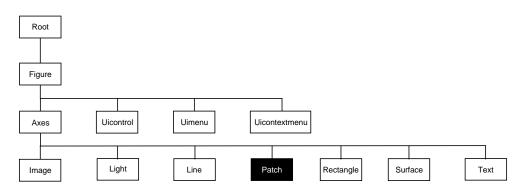
```
fac = [1 2 3; 1 3 4];
```


To specify the face colors, define a 2-by-3 matrix containing two RGB color definitions.

 $tcolor = [1 \ 1 \ 1; .7 \ .7 \ .7];$

With two faces and two colors, MATLAB can color each face with flat shading. This means you must set the FaceCol or property to flat, since the faces/vertices technique is available only as a low-level function call (i.e., only by specifying property name/property value pairs).

Create the patch by specifying the Faces, Vertices, and FaceVertexCData properties as well as the FaceCol or property.


```
patch('Faces', fac, 'Vertices', vert, 'FaceVertexCData', tcolor, ...
'FaceColor', 'flat')
```


Specifying only unique vertices and their connection matrix can reduce the size of the data for patches having many faces. See the descriptions of the Faces, Vertices, and FaceVertexCData properties for information on how to define them.

MATLAB does not require each face to have the same number of vertices. In cases where they do not, pad the Faces matrix with NaNs. To define a patch with faces that do not close, add one or more NaN to the row in the Vertices matrix that defines the vertex you do not want connected.

Object Hierarchy

Setting Default Properties

You can set default patch properties on the axes, figure, and root levels.

set(0, 'DefaultPatchPropertyName', PropertyValue...)
set(gcf, 'DefaultPatchPropertyName', PropertyValue...)
set(gca, 'DefaultPatchPropertyName', PropertyValue...)

PropertyName is the name of the patch property and PropertyValue is the value you are specifying. Use set and get to access patch properties.

Property List The following table lists all patch properties and provides a brief description of each. The property name links take you to an expanded description of the properties.

Property Name	Property Description	Property Value
Data Defining the Object		
Faces	Connection matrix for Vertices	Values: m-by-n matrix Default: [1, 2, 3]

patch

Property Name	Property Description	Property Value
Vertices	Matrix of <i>x</i> -, <i>y</i> -, and <i>z</i> -coordinates of the vertices (used with Faces)	Values: matrix Default: [0, 1; 1, 1; 0, 0]
XData	The <i>x</i> -coordinates of the vertices of the patch	Values: vector or matrix Default: [0; 1; 0]
YData	The <i>y</i> -coordinates of the vertices of the patch	Values: vector or matrix Default: [1; 1; 0]
ZData	The <i>z</i> -coordinates of the vertices of the patch	Values: vector or matrix Default: [] empty matrix
Specifying Color		
CData	Color data for use with the XData/YData/ZData method	Values: scalar, vector, or matrix Default: [] empty matrix
CDataMapping	Controls mapping of CData to colormap	Values: scal ed, di rect Default: scal ed
EdgeColor	Color of face edges	Values: Col orSpec, none, fl at, i nterp Default: Col orSpec
FaceColor	Color of face	Values: Col orSpec, none, fl at, i nterp Default: Col orSpec
FaceVertexCData	Color data for use with Faces/Verti ces method	Values: matrix Default: [] empty matrix
MarkerEdgeCol or	Color of marker or the edge color for filled markers	Values: Col orSpec, none, auto Default: auto
MarkerFaceCol or	Fill color for markers that are closed shapes	Values: Col or Spec, none, auto Default: none
Controlling the Effects of	of Liahts	

Property Name	Property Description	Property Value
Ambi entStrength	Intensity of the ambient light	Values: scalar >=0 and <=1 Default: 0. 3
BackFaceLi ghti ng	Controls lighting of faces pointing away from camera	Values: unlit, lit, reverselit Default: reverselit
DiffuseStrength	Intensity of diffuse light	Values: scalar >=0 and <=1 Default: 0. 6
EdgeLi ght i ng	Method used to light edges	Values: none, fl at, gouraud, phong Default: none
FaceLi ght i ng	Method used to light edges	Values: none, fl at, gouraud, phong Default: none
NormalMode	MATLAB-generated or user-specified normal vectors	Values: auto, manual Default: auto
Specul arCol orReflectan ce	Composite color of specularly reflected light	Values: scalar 0 to 1 Default: 1
Specul arExponent	Harshness of specular reflection	Values: scalar >= 1 Default: 10
Specul arStrength	Intensity of specular light	Values: scalar >=0 and <=1 Default: 0. 9
VertexNormals	Vertex normal vectors	Values: matrix
Defining Edges and Marke	rs	
Li neStyl e	Select from five line styles.	Values: –, ––, : , –. , none Default: –
Li neWi dt h	The width of the edge in points	Values: scalar Default: 0.5 points

patch

Property Name	Property Description	Property Value
Marker	Marker symbol to plot at data points	Values: see Marker property Default: none
MarkerSize	Size of marker in points	Values: size in points Default: 6
Specifying Transparency		
Al phaDataMappi ng	Transparency mapping method	none, di rect, scal ed Default: scal ed
EdgeAl pha	Transparency of the edges of patch faces	scal ar, fl at, i nterp Default: 1 (opaque)
FaceAl pha	Transparency of the patch face	scal ar, fl at, i nterp Default: 1 (opaque)
FaceVertexAl phaData	Face and vertex transparency data	m-by-1 matrix
Controlling the Appearan	ce	
Clipping	Clipping to axes rectangle	Values: on, off Default: on
EraseMode	Method of drawing and erasing the patch (useful for animation)	Values: normal, none, xor, background Default: normal
Sel ecti onlli ghl i ght	Highlight patch when selected (Sel ected property set to on)	Values: on, off Default: on
Vi si bl e	Make the patch visible or invisible	Values: on, off Default: on
Controlling Access to Obj	acte	

Property Name	Property Description	Property Value
HitTest	Determines if the patch can become the current object (see the figure CurrentObj ect property)	Values: on, off Default: on
Controlling Callback R	outine Execution	
BusyActi on	Specify how to handle callback routine interruption	Values: cancel , queue Default: queue
ButtonDownFcn	Define a callback routine that executes when a mouse button is pressed on over the patch	Values: string or function handle Default: ' ' (empty string)
CreateFcn	Define a callback routine that executes when an patch is created	Values: string or function handle Default: ' ' (empty string)
Del eteFcn	Define a callback routine that executes when the patch is deleted (via cl ose or del ete)	Values: string or function handle Default: ' ' (empty string)
Interrupti bl e	Determine if callback routine can be interrupted	Values: on, off Default: on (can be interrupted)
UI Context Menu	Associate a context menu with the patch	Values: handle of a Uicontrextmenu
General Information A	bout the Patch	
Chi l dren	Patch objects have no children	Values: [] (empty matrix)
Parent	The parent of a patch object is always an axes object	Value: axes handle
Selected	Indicate whether the patch is in a "selected" state.	Values: on, off Default: on
Tag	User-specified label	Value: any string Default: '' (empty string)

Property Name	Property Description	Property Value
Туре	The type of graphics object (read only)	Value: the string ' patch'
UserData	User-specified data	Values: any matrix Default: [] (empty matrix)

See Also area, caxis, fill, fill3, i sosurface, surface

Modifying Properties	You can set and query graphics object properties in two ways:
	• The Property Editor is an interactive tool that enables you to see and change object property values.
	 The set and get commands enable you to set and query the values of properties
	To change the default value of properties see Setting Default Property Values.
Patch Property Descriptions	This section lists property names along with the type of values each accepts. Curly braces { } enclose default values.
	AlphaDataMapping none direct {scaled}
	<i>Transparency mapping method</i> . This property determines how MATLAB interprets indexed alpha data. This property can be any of the following:
	 none - The transparency values of FaceVertexAl phaData are between 0 and 1 or are clamped to this range (the default).
	• scal ed - Transform the FaceVertexAl phaData to span the portion of the alphamap indicated by the axes ALim property, linearly mapping data values to alpha values.
	• di rect - use the FaceVertexAl phaData as indices directly into the alphamap. When not scaled, the data are usually integer values ranging from 1 to l ength(al phamap). MATLAB maps values less than 1 to the first alpha value in the alphamap, and values greater than l ength(al phamap) to the last alpha value in the alphamap. Values with a decimal portion are fixed to the nearest, lower integer. If FaceVertexAl phaData is an array uni t8 integers, then the indexing begins at 0 (i.e., MATLAB maps a value of 0 to the first alpha value in the alphamap).
	AnbientStrengthscalar >= 0 and <= 1
	<i>Strength of ambient light.</i> This property sets the strength of the ambient light, which is a nondirectional light source that illuminates the entire scene. You must have at least one visible light object in the axes for the ambient light to be visible. The axes Ambi entCol or property sets the color of the ambient light,

which is therefore the same on all objects in the axes.

You can also set the strength of the diffuse and specular contribution of light objects. See the DiffuseStrength and Specul arStrength properties.

BackFaceLighting unlit | lit | {reverselit}

Face lighting control. This property determines how faces are lit when their vertex normals point away from the camera:

- unl i t face is not lit
- lit face lit in normal way
- reversel i t face is lit as if the vertex pointed towards the camera

This property is useful for discriminating between the internal and external surfaces of an object. See the *Using MATLAB Graphics* manual for an example.

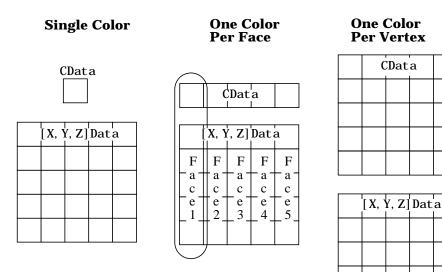
BusyAction cancel | {queue}

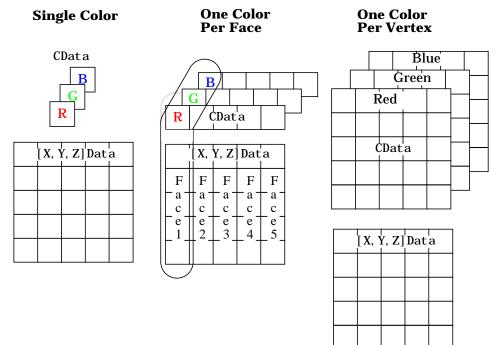
Callback routine interruption. The BusyActi on property enables you to control how MATLAB handles events that potentially interrupt executing callback routines. If there is a callback routine executing, subsequently invoked callback routes always attempt to interrupt it. If the Interrupti bl e property of the object whose callback is executing is set to on (the default), then interruption occurs at the next point where the event queue is processed. If the Interrupti bl e property is off, the BusyActi on property (of the object owning the executing callback) determines how MATLAB handles the event. The choices are:

- cancel discard the event that attempted to execute a second callback routine.
- queue queue the event that attempted to execute a second callback routine until the current callback finishes.

ButtonDownFcn string or function handle

Button press callback routine. A callback routine that executes whenever you press a mouse button while the pointer is over the patch object. Define this routine as a string that is a valid MATLAB expression or the name of an M-file. The expression executes in the MATLAB workspace.


See Function Handle Callbacks for information on how to use function handles to define the callback function.


CData scalar, vector, or matrix

Patch colors. This property specifies the color of the patch. You can specify color for each vertex, each face, or a single color for the entire patch. The way

MATLAB interprets CData depends on the type of data supplied. The data can be numeric values that are scaled to map linearly into the current colormap, integer values that are used directly as indices into the current colormap, or arrays of RGB values. RGB values are not mapped into the current colormap, but interpreted as the colors defined. On true color systems, MATLAB uses the actual colors defined by the RGB triples. On pseudocolor systems, MATLAB uses dithering to approximate the RGB triples using the colors in the figure's Col ormap and Di thermap.

The following two diagrams illustrate the dimensions of CData with respect to the coordinate data arrays, XData, YData, and ZData. The first diagram illustrates the use of indexed color.

The second diagram illustrates the use of true color. True color requires *m*-by-*n*-by-3 arrays to define red, green, and blue components for each color.

Note that if CData contains NaNs, MATLAB does not color the faces.

See also the Faces, Vertices, and FaceVertexCData properties for an alternative method of patch definition.

CDataMapping {scaled} | direct

Direct or scaled color mapping. This property determines how MATLAB interprets indexed color data used to color the patch. (If you use true color specification for CData or FaceVertexCData, this property has no effect.)

- scal ed transform the color data to span the portion of the colormap indicated by the axes CLim property, linearly mapping data values to colors. See the caxi s command for more information on this mapping.
- di rect use the color data as indices directly into the colormap. When not scaled, the data are usually integer values ranging from 1 to

l ength(col ormap). MATLAB maps values less than 1 to the first color in the colormap, and values greater than l ength(col ormap) to the last color in the colormap. Values with a decimal portion are fixed to the nearest, lower integer.

Children matrix of handles

Always the empty matrix; patch objects have no children.

Clipping {on} | off

Clipping to axes rectangle. When Cl i ppi ng is on, MATLAB does not display any portion of the patch outside the axes rectangle.

CreateFcn string or function handle

Callback routine executed during object creation. This property defines a callback routine that executes when MATLAB creates a patch object. You must define this property as a default value for patches. For example, the statement,

set(0, 'DefaultPatchCreateFcn', 'set(gcf, 'DitherMap', my_dither_ map)')

defines a default value on the root level that sets the figure Di therMap property whenever you create a patch object. MATLAB executes this routine after setting all properties for the patch created. Setting this property on an existing patch object has no effect.

The handle of the object whose CreateFcn is being executed is accessible only through the root CallbackObject property, which you can query using gcbo.

See Function Handle Callbacks for information on how to use function handles to define the callback function.

DeleteFcn string or function handle

Delete patch callback routine. A callback routine that executes when you delete the patch object (e.g., when you issue a del ete command or clear the axes (cl a) or figure (cl f) containing the patch). MATLAB executes the routine before deleting the object's properties so these values are available to the callback routine.

The handle of the object whose DeleteFcn is being executed is accessible only through the root CallbackObject property, which you can query using gcbo.

See Function Handle Callbacks for information on how to use function handles to define the callback function.

DiffuseStrength scalar >= 0 and <= 1

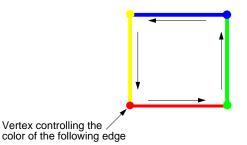
Intensity of diffuse light. This property sets the intensity of the diffuse component of the light falling on the patch. Diffuse light comes from light objects in the axes.

You can also set the intensity of the ambient and specular components of the light on the patch object. See the Ambi entStrength and Specul arStrength properties.

EdgeAlpha {scalar = 1} | flat | interp

Transparency of the edges of patch faces. This property can be any of the following:

- scalar A single non-Nan scalar value between 0 and 1 that controls the transparency of all the edges of the object. 1 (the default) is fully opaque and 0 means completely transparent.
- flat The alpha data (FaceVertexAl phaData) of each vertex controls the transparency of the edge that follows it.
- interp Linear interpolation of the alpha data (FaceVertexAl phaData) at each vertex determines the transparency of the edge.


Note that you cannot specify flat or interp EdgeAl pha without first setting FaceVertexAl phaData to a matrix containing one alpha value per face (flat) or one alpha value per vertex (interp).

EdgeColor {ColorSpec} | none | flat | interp

Color of the patch edge. This property determines how MATLAB colors the edges of the individual faces that make up the patch.

- Col orSpec A three-element RGB vector or one of the MATLAB predefined names, specifying a single color for edges. The default edge color is black. See Col orSpec for more information on specifying color.
- none Edges are not drawn.

• flat – The color of each vertex controls the color of the edge that follows it. This means flat edge coloring is dependent on the order you specify the vertices:

• interp - Linear interpolation of the CData or FaceVertexCData values at the vertices determines the edge color.

EdgeLighting {none} | flat | gouraud | phong

Algorithm used for lighting calculations. This property selects the algorithm used to calculate the effect of light objects on patch edges. Choices are:

- none Lights do not affect the edges of this object.
- flat The effect of light objects is uniform across each edge of the patch.
- gouraud The effect of light objects is calculated at the vertices and then linearly interpolated across the edge lines.
- phong The effect of light objects is determined by interpolating the vertex normals across each edge line and calculating the reflectance at each pixel. Phong lighting generally produces better results than Gouraud lighting, but takes longer to render.

EraseMode {normal } | none | xor | background

Erase mode. This property controls the technique MATLAB uses to draw and erase patch objects. Alternative erase modes are useful in creating animated sequences, where control of the way individual objects redraw is necessary to improve performance and obtain the desired effect.

• normal – Redraw the affected region of the display, performing the three-dimensional analysis necessary to ensure that all objects are rendered correctly. This mode produces the most accurate picture, but is the slowest.

The other modes are faster, but do not perform a complete redraw and are therefore less accurate.

- none Do not erase the patch when it is moved or destroyed. While the object is still visible on the screen after erasing with EraseMode none, you cannot print it because MATLAB stores no information about its former location.
- xor- Draw and erase the patch by performing an exclusive OR (XOR) with each pixel index of the screen behind it. Erasing the patch does not damage the color of the objects behind it. However, patch color depends on the color of the screen behind it and is correctly colored only when over the axes background Col or, or the figure background Col or if the axes Col or is set to none.
- background Erase the patch by drawing it in the axes' background Col or, or the figure background Col or if the axes Col or is set to none. This damages objects that are behind the erased patch, but the patch is always properly colored.

Printing with Non-normal Erase Modes. MATLAB always prints figures as if the EraseMode of all objects is normal. This means graphics objects created with EraseMode set to none, xor, or background can look different on screen than on paper. On screen, MATLAB may mathematically combine layers of colors (e.g., XORing a pixel color with that of the pixel behind it) and ignore three-dimensional sorting to obtain greater rendering speed. However, these techniques are not applied to the printed output.

You can use the MATLAB getframe command or other screen capture application to create an image of a figure containing non-normal mode objects.

FaceAlpha {scalar = 1} | flat | interp

Transparency of the patch face. This property can be any of the following:

- A scalar A single non-NaN scalar value between 0 and 1 that controls the transparency of all the faces of the object. 1 (the default) is fully opaque and 0 is completely transparent (invisible).
- flat The values of the alpha data (FaceVertexAl phaData) determine the transparency for each face. The alpha data at the first vertex determines the transparency of the entire face.
- interp Bilinear interpolation of the alpha data (FaceVertexAl phaData) at each vertex determine the transparency of each face.

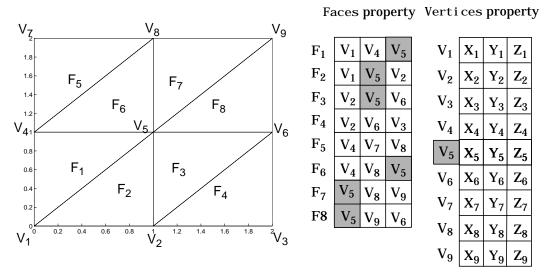
Note that you cannot specify flat or interp FaceAl pha without first setting FaceVertexAl phaData to a matrix containing one alpha value per face (flat) or one alpha value per vertex (interp).

FaceColor {ColorSpec} | none | flat | interp

Color of the patch face. This property can be any of the following:

- Col orSpec A three-element RGB vector or one of the MATLAB predefined names, specifying a single color for faces. See Col orSpec for more information on specifying color.
- none Do not draw faces. Note that edges are drawn independently of faces.
- flat The values of CData or FaceVertexCData determine the color for each face in the patch. The color data at the first vertex determines the color of the entire face.
- interp Bilinear interpolation of the color at each vertex determines the coloring of each face.

FaceLighting{none}| flat| gouraud| phong


Algorithm used for lighting calculations. This property selects the algorithm used to calculate the effect of light objects on patch faces. Choices are:

- none Lights do not affect the faces of this object.
- fl at The effect of light objects is uniform across the faces of the patch. Select this choice to view faceted objects.
- gouraud The effect of light objects is calculated at the vertices and then linearly interpolated across the faces. Select this choice to view curved surfaces.
- phong The effect of light objects is determined by interpolating the vertex normals across each face and calculating the reflectance at each pixel. Select this choice to view curved surfaces. Phong lighting generally produces better results than Gouraud lighting, but takes longer to render.

Faces m-by-n matrix

Vertex connection defining each face. This property is the connection matrix specifying which vertices in the Vertices property are connected. The Faces matrix defines *m* faces with up to *n* vertices each. Each row designates the connections for a single face, and the number of elements in that row that are not NaN defines the number of vertices for that face.

The Faces and Verti ces properties provide an alternative way to specify a patch that can be more efficient than using *x*, *y*, and *z* coordinates in most cases. For example, consider the following patch. It is composed of eight triangular faces defined by nine vertices.

The corresponding Faces and Verti ces properties are shown to the right of the patch. Note how some faces share vertices with other faces. For example, the fifth vertex (V5) is used six times, once each by faces one, two, and three and six, seven, and eight. Without sharing vertices, this same patch requires 24 vertex definitions.

FaceVertexAl phaDatam-by-1 matrix

Face and vertex transparency data. The FaceVertexAl phaData property specifies the transparency of patches defined by the Faces and Vertices properties. The interpretation of the values specified for FaceVertexAl phaData depends on the dimensions of the data.

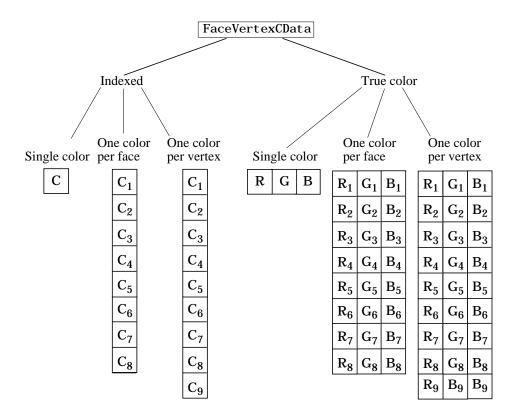
FaceVertexAl phaData can be one of the following:

- A single value, which applies the same transparency to the entire patch.
- An m-by-1 matrix (where m is the number of rows in the Faces property), which specifies one transparency value per face.

• An m-by-1 matrix (where m is the number of rows in the Vertices property), which specifies one transparency value per vertex.

FaceVertexCData matrix

Face and vertex colors. The FaceVertexCData property specifies the color of patches defined by the Faces and Verti ces properties, and the values are used when FaceCol or, EdgeCol or, MarkerFaceCol or, or MarkerEdgeCol or are set appropriately. The interpretation of the values specified for FaceVertexCData depends on the dimensions of the data.


For indexed colors, FaceVertexCData can be:

- A single value, which applies a single color to the entire patch
- An *n*-by-1 matrix, where *n* is the number of rows in the Faces property, which specifies one color per face
- An *n*-by-1 matrix, where *n* is the number of rows in the Verti ces property, which specifies one color per vertex

For true colors, FaceVertexCData can be:

- A 1-by-3 matrix , which applies a single color to the entire patch
- An *n*-by-3 matrix, where *n* is the number of rows in the Faces property, which specifies one color per face
- An *n*-by-3 matrix, where *n* is the number of rows in the Verti ces property, which specifies one color per vertex

The following diagram illustrates the various forms of the FaceVertexCData property for a patch having eight faces and nine vertices. The CDataMapping

property determines how MATLAB interprets the FaceVertexCData property when you specify indexed colors.

HandleVisibility {on} | callback | off

Control access to object's handle by command-line users and GUIs. This property determines when an object's handle is visible in its parent's list of children. Handl eVi si bi l i ty is useful for preventing command-line users from accidentally drawing into or deleting a figure that contains only user interface devices (such as a dialog box).

Handles are always visible when HandleVisibility is on.

Setting Handl eVi si bility to call back causes handles to be visible from within callback routines or functions invoked by callback routines, but not from within functions invoked from the command line. This provides a means to

protect GUIs from command-line users, while allowing callback routines to have complete access to object handles.

Setting Handl eVi si bility to off makes handles invisible at all times. This may be necessary when a callback routine invokes a function that might potentially damage the GUI (such as evaluating a user-typed string), and so temporarily hides its own handles during the execution of that function.

When a handle is not visible in its parent's list of children, it cannot be returned by functions that obtain handles by searching the object hierarchy or querying handle properties. This includes get, findobj, gca, gcf, gco, newplot, cl a, cl f, and cl ose.

When a handle's visibility is restricted using callback or off, the object's handle does not appear in its parent's Children property, figures do not appear in the root's CurrentFigure property, objects do not appear in the root's CallbackObj ect property or in the figure's CurrentObj ect property, and axes do not appear in their parent's Currentaxes property.

You can set the root ShowHi ddenHandl es property to on to make all handles visible, regardless of their Handl eVi si bility settings (this does not affect the values of the Handl eVi si bility properties).

Handles that are hidden are still valid. If you know an object's handle, you can set and get its properties, and pass it to any function that operates on handles.

HitTest {on} | off

Selectable by mouse click. Hi tTest determines if the patch can become the current object (as returned by the gco command and the figure CurrentObj ect property) as a result of a mouse click on the patch. If Hi tTest is off, clicking on the patch selects the object below it (which maybe the axes containing it).

Interruptible {on} | off

Callback routine interruption mode. The Interruptible property controls whether a patch callback routine can be interrupted by subsequently invoked callback routines. Only callback routines defined for the ButtonDownFcn are affected by the Interruptible property. MATLAB checks for events that can interrupt a callback routine only when it encounters a drawnow, figure, getframe, or pause command in the routine. See the BusyActi on property for related information.

LineStyle {-} | -- | : | -. | none

Edge linestyle. This property specifies the line style of the patch edges. The following table lists the available line styles.

Symbol	Line Style
_	solid line (default)
	dashed line
:	dotted line
	dash-dot line
none	no line

You can use Li neStyl e none when you want to place a marker at each point but do not want the points connected with a line (see the Marker property).

LineWidth scalar

Edge line width. The width, in points, of the patch edges (1 point = $\frac{1}{72}$ inch). The default Li neWi dth is 0.5 points.

Marker character (see table)

Marker symbol. The Marker property specifies marks that locate vertices. You can set values for the Marker property independently from the Li neStyl e property. The following tables lists the available markers.

Marker Specifier	Description
+	plus sign
0	circle
*	asterisk
	point
x	cross
S	square

Marker Specifier	Description
d	diamond
٨	upward pointing triangle
V	downward pointing triangle
>	right pointing triangle
<	left pointing triangle
р	five-pointed star (pentagram)
h	six-pointed star (hexagram)
none	no marker (default)

MarkerEdgeColor ColorSpec | none | {auto} | flat

Marker edge color. The color of the marker or the edge color for filled markers (circle, square, diamond, pentagram, hexagram, and the four triangles).

- Col or Spec defines the color to use.
- none specifies no color, which makes nonfilled markers invisible.
- auto sets MarkerEdgeCol or to the same color as the EdgeCol or property.

MarkerFaceColor ColorSpec | {none} | auto | flat

Marker face color. The fill color for markers that are closed shapes (circle, square, diamond, pentagram, hexagram, and the four triangles).

- Col or Spec defines the color to use.
- none makes the interior of the marker transparent, allowing the background to show through.
- aut o sets the fill color to the axes color, or the figure color, if the axes Col or property is set to none.

MarkerSize size in points

Marker size. A scalar specifying the size of the marker, in points. The default value for MarkerSi ze is six points (1 point = $1/_{72}$ inch). Note that MATLAB draws the point marker at 1/3 of the specified size.

Normal Mode {auto} | manual

MATLAB-generated or user-specified normal vectors. When this property is aut o, MATLAB calculates vertex normals based on the coordinate data. If you specify your own vertex normals, MATLAB sets this property to manual and does not generate its own data. See also the VertexNormal's property.

Parent axes handle

Patch's parent. The handle of the patch's parent object. The parent of a patch object is the axes in which it is displayed. You can move a patch object to another axes by setting this property to the handle of the new parent.

Selected on | {off}

Is object selected? When this property is on, MATLAB displays selection handles or a dashed box (depending on the number of faces) if the Sel ectionHi ghl i ght property is also on. You can, for example, define the ButtonDownFcn to set this property, allowing users to select the object with the mouse.

SelectionHighlight {on} | off

Objects highlight when selected. When the Selected property is on, MATLAB indicates the selected state by:

- Drawing handles at each vertex for a single-faced patch.
- Drawing a dashed bounding box for a multi-faced patch.

When SelectionHighlight is off, MATLAB does not draw the handles.

Specul arCol orReflectancescalar in the range 0 to 1

Color of specularly reflected light. When this property is 0, the color of the specularly reflected light depends on both the color of the object from which it reflects and the color of the light source. When set to 1, the color of the specularly reflected light depends only on the color or the light source (i.e., the light object Col or property). The proportions vary linearly for values in between.

Specul arExponent scalar >= 1

Harshness of specular reflection. This property controls the size of the specular spot. Most materials have exponents in the range of 5 to 20.

Specul arStrength scalar >= 0 and <= 1

Intensity of specular light. This property sets the intensity of the specular component of the light falling on the patch. Specular light comes from light objects in the axes.

You can also set the intensity of the ambient and diffuse components of the light on the patch object. See the Ambi entStrength and DiffuseStrength properties.

Tag string

User-specified object label. The Tag property provides a means to identify graphics objects with a user-specified label. This is particularly useful when constructing interactive graphics programs that would otherwise need to define object handles as global variables or pass them as arguments between callback routines.

For example, suppose you use patch objects to create borders for a group of uicontrol objects and want to change the color of the borders in a uicontrol's callback routine. You can specify a Tag with the patch definition:

patch(X, Y, 'k', 'Tag', 'PatchBorder')

Then use findobj in the uicontrol's callback routine to obtain the handle of the patch and set its FaceCol or property.

```
set(findobj('Tag', 'PatchBorder'), 'FaceColor', 'w')
```

string (read only)

Туре

Class of the graphics object. For patch objects, Type is always the string ' patch'.

UIContextMenu handle of a uicontextmenu object

Associate a context menu with the patch. Assign this property the handle of a uicontextmenu object created in the same figure as the patch. Use the ui contextmenu function to create the context menu. MATLAB displays the context menu whenever you right-click over the patch.

UserData matrix

User-specified data. Any matrix you want to associate with the patch object. MATLAB does not use this data, but you can access it using set and get.

VertexNormals matrix

Surface normal vectors. This property contains the vertex normals for the patch. MATLAB generates this data to perform lighting calculations. You can supply your own vertex normal data, even if it does not match the coordinate data. This can be useful to produce interesting lighting effects.

Vertices matrix

Vertex coordinates. A matrix containing the *x*-, *y*-, *z*-coordinates for each vertex. See the Faces property for more information.

Visible {on} | off

Patch object visibility. By default, all patches are visible. When set to off, the patch is not visible, but still exists and you can query and set its properties.

XData vector or matrix

X-coordinates. The *x*-coordinates of the patch vertices. If XData is a matrix, each column represents the *x*-coordinates of a single face of the patch. In this case, XData, YData, and ZData must have the same dimensions.

YData vector or matrix

Y-coordinates. The *y*-coordinates of the patch vertices. If YData is a matrix, each column represents the *y*-coordinates of a single face of the patch. In this case, XData, YData, and ZData must have the same dimensions.

ZData vector or matrix

Z-coordinates. The *z*-coordinates of the patch vertices. If ZData is a matrix, each column represents the *z*-coordinates of a single face of the patch. In this case, XData, YData, and ZData must have the same dimensions.

See Also p

patch

	View of the MATIAD diverties and weth
Purpose	View or change the MATLAB directory search path
Graphical Interface	As an alternative to the path function, use the Set Path dialog box. To open it, select Set Path from the File menu in the MATLAB desktop.
Syntax	<pre>path path('newpath') path(path, 'newpath') path('newpath', path) p = path()</pre>
Description	<code>path</code> displays the current MATLAB search path. The initial search path list is defined by tool <code>box/l</code> <code>ocal/pathdef.</code> m.
	path(' newpath') changes the search path to newpath, where newpath is a string array of directories.
	path(path , 'newpath') appends a new directory to the current search path.
	path('newpath', path) prepends a new directory to the current search path.
	p = path() returns the specified path in string variable p.
Remarks	For more information on how MATLAB uses the directory search path, see "Search Path", "How Functions Work", and "How MATLAB Determines Which Method to Call".
	Note Save any M-files you create and any MathWorks-supplied M-files that you edit in a directory that is not in the \$matl abroot/tool box directory tree. If you keep your files in \$matl abroot/tool box directories, they may be overwritten when you install a new version of MATLAB. Also note that locations of files in \$matl abroot/tool box directories are loaded and cached in memory at the beginning of each MATLAB session to improve performance. If you edit and save files in \$matl abroot/tool box directories using the Editor, run cl ear functions to ensure that the updated files are used. If you save files to \$matl abroot/tool box directories using an external editor or add or remove in from these directories using file system operations, run rehash tool box before you use the files in the current session. If you make

	changes to existing files in \$mat1 abroot/tool box directories using an external editor, run clear functionname before you use the files in the current session. For more information, see rehash or "Toolbox Path Caching" in MATLAB Development Environment documentation.
Examples	To add a new directory to the search path on Windows, path(path, ' c: /tool s/goodstuff')
	To add a new directory to the search path on UNIX,
	<pre>path(path, ' /home/tools/goodstuff')</pre>
See Also	addpath, cd, dir, genpath, matl abroot, parti al path, pathtool, rehash, rmpath, what

Purpose	Save current MATLAB search path to pathdef.mfile	
Graphical Interface	As an alternative to the pathdef function, use the Set Path dialog box. To open it, select Set Path from the File menu in the MATLAB desktop.	
Syntax	path2r path2r	c c newfile
Description	${\tt path2rc}$ saves the current MATLAB search path to ${\tt pathdef.m.}$ It returns	
	0	If the file was saved successfully
	1	If the save failed
	-	c newfile saves the current MATLAB search path to newfile, where e is in the current directory or is a relative or absolute path.
Examples	path2rc myfiles/newpath	
		he current search path to the file <code>newpath.m</code> , which is located in the s directory in the MATLAB current directory.
See Also	path, p	athtool

pathtool

Purpose	Open Set Path dialog box to view and change MATLAB path
Graphical Interface	As an alternative to the pathtool function, select Set Path from the File menu in the MATLAB desktop.
Syntax	pathtool
Description	pathtool opens the Set Path dialog box, a graphical user interface you use to view and modify the MATLAB search path, as well as see files on the path.

path.

Directories on the current MATLAB search

When you press one of these buttons, the change is made to the current search path, but the search path is not automatically saved for future sessions.

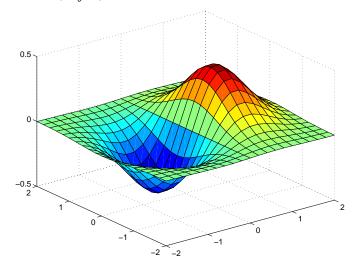
\backslash			
	All changes take effect imr	nediately.	
	`	MATLAB search path:	
	Add Folder	💼 D:\myfiles	
Make changes to the search path.	Add with Subfolders	D:\myfiles\reports	
		D:\matlabr12\toolbox\matlab\general	
		D:\matlabr12\toolbox\matlab\ops	
	Move to Top	D:\matlabr12\toolbox\matlab\lang	
	Maura Line I	D:\matlabr12\toolbox\matlab\ox\elmat	
	Move Up	D:\matlabr12\toolbox\matlab\elfun	
	Move Down	D:\matlabr12\toolbox\matlab\specfun D:\matlabr12\toolbox\matlabvimatfun D:\matlabr12\toolbox\matlab\ox\matfun	
	Move to Bottom	D:\mailabr12\toolbox\mailab\ox\mailab\ox\mailab	
		D:\matlabr12\toolbox\matlab\ox\audio	
		D:\matlabr12\toolbox\matlab\ox\polyfun	
Save changes for	Remove	D'Imatlabri 2itaalbaimatlabiai funfun,	
use in the next			•
MATLAB session.	SaveClose	Revert Default	Help

See Also addpath, edit, path, rmpath, workspace "Setting the Search Path"

Purpose	Halt execution temporarily
Syntax	pause pause(n) pause on pause off
Description	pause, by itself, causes M-files to stop and wait for you to press any key before continuing. pause(n) pauses execution for n seconds before continuing, where n can be any real number. The resolution of the clock is platform specific. A fractional pause of 0.01 seconds should be supported on most platforms. pause on allows subsequent pause commands to pause execution. pause off ensures that any subsequent pause or pause(n) statements do not pause execution. This allows normally interactive scripts to run unattended.
See Also	drawnow

pbaspect

Purpose	Set or query the plot box aspect ratio
Syntax	<pre>pbaspect pbaspect([aspect_ratio]) pbaspect('mode') pbaspect('auto') pbaspect('manual') pbaspect(axes_handle,)</pre>
Description	The plot box aspect ratio determines the relative size of the x-, y-, and z-axes.
	pbaspect with no arguments returns the plot box aspect ratio of the current axes.
	pbaspect([aspect_ratio]) sets the plot box aspect ratio in the current axes to the specified value. Specify the aspect ratio as three relative values representing the ratio of the x-, y-, and z-axes size. For example, a value of [1 1 1] (the default) means the plot box is a cube (although with stretch-to-fill enabled, it may not appear as a cube). See Remarks.
	<pre>pbaspect('mode') returns the current value of the plot box aspect ratio mode, which can be either auto (the default) or manual. See Remarks.</pre>
	${\tt pbaspect('auto')}$ sets the plot box aspect ratio mode to auto.
	${\tt pbaspect('manual')}$ sets the plot box aspect ratio mode to manual.
	$pbaspect(axes_handle,)$ performs the set or query on the axes identified by the first argument, $axes_handle$. If you do not specify an axes handle, $pbaspect$ operates on the current axes.
Remarks	pbaspect sets or queries values of the axes object Pl otBoxAspectRati o and Pl otBoxAspectRati oMode properties.
	When the plot box aspect ratio mode is $auto$, MATLAB sets the ratio to $[1\ 1\ 1]$, but may change it to accommodate manual settings of the data aspect ratio, camera view angle, or axis limits. See the axes DataAspectRatio property for a table listing the interactions between various properties.

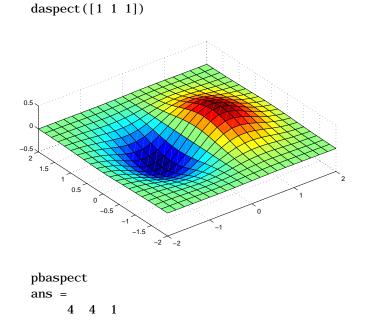

Setting a value for the plot box aspect ratio or setting the plot box aspect ratio mode to manual disables the MATLAB stretch-to-fill feature (stretching of the axes to fit the window). This means setting the plot box aspect ratio to its current value,

pbaspect(pbaspect)

can cause a change it the way the graphs look. See the Remarks section of the axes reference description and the "Aspect Ratio" section in the *Using MATLAB Graphics* manual for a discussion of stretch-to-fill.

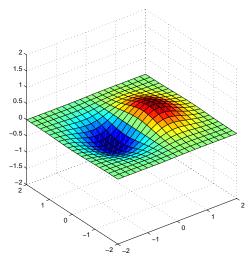
Examples The following surface plot of the function $z = xe^{(-x^2 - y^2)}$ is useful to illustrate the plot box aspect ratio. First plot the function over the range $-2 \le x \le 2, -2 \le y \le 2$,

[x, y] = meshgrid([-2:.2:2]); z = x.*exp(-x.^2 - y.^2); surf(x, y, z)



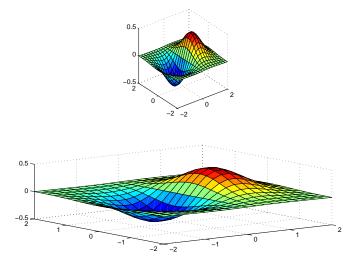
Querying the plot box aspect ratio shows that the plot box is square.

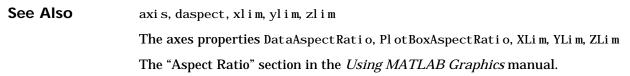
pbaspect ans = 1 1 1 It is also interesting to look at the data aspect ratio selected by MATLAB.


daspect ans = 4 4 1

To illustrate the interaction between the plot box and data aspect ratios, set the data aspect ratio to $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ and again query the plot box aspect ratio.

The plot box aspect ratio has changed to accommodate the specified data aspect ratio. Now suppose you want the plot box aspect ratio to be [1 1 1] as well.




Notice how MATLAB changed the axes limits because of the constraints introduced by specifying both the plot box and data aspect ratios.

You can also use pbaspect to disable stretch-to-fill. For example, displaying two subplots in one figure can give surface plots a squashed appearance. Disabling stretch-to-fill.

```
upper_plot = subplot(211);
surf(x, y, z)
lower_plot = subplot(212);
surf(x, y, z)
pbaspect(upper_plot, 'manual')
```

pbaspect

Purpose	Preconditioned Conjugate Gradients method
Syntax	<pre>x = pcg(A, b) pcg(A, b, tol) pcg(A, b, tol, maxit) pcg(A, b, tol, maxit, M) pcg(A, b, tol, maxit, M1, M2) pcg(A, b, tol, maxit, M1, M2, x0) pcg(A, b, tol, maxit, M1, M2, x0, p1, p2,) [x, flag] = pcg(A, b, tol, maxit, M1, M2, x0, p1, p2,) [x, flag, relres] = pcg(A, b, tol, maxit, M1, M2, x0, p1, p2,) [x, flag, relres, iter] = pcg(A, b, tol, maxit, M1, M2, x0, p1, p2,) [x, flag, relres, iter, resvec] = pcg(A, b, tol, maxit, M1, M2, x0, p1, p2,)</pre>
Description	$x = pcg(A, b)$ attempts to solve the system of linear equations $A^*x=b$ for x. The n-by-n coefficient matrix A must be symmetric and positive definite, and should also be large and sparse. The column vector b must have length n. A can be a function afun such that $afun(x)$ returns A^*x . If pcg converges, a message to that effect is displayed. If pcg fails to converge after the maximum number of iterations or halts for any reason, a warning message is printed displaying the relative residual norm(b-A*x) /norm(b) and the iteration number at which the method stopped or failed.
	the iteration number at which the include stopped of lance. pcg(A, b, tol) specifies the tolerance of the method. If tol is [], then pcg uses the default, 1e-6. pcg(A, b, tol, maxit) specifies the maximum number of iterations. If maxit is [], then pcg uses the default, min(n, 20). pcg(A, b, tol, maxit, M) and $pcg(A, b, tol, maxit, M1, M2)$ use symmetric positive definite preconditioner Mor M = M1*M2 and effectively solve the system i nv(M) *A*x = i nv(M) *b for x. If Mis [] then pcg applies no preconditioner. M can be a function that returns M\x. pcg(A, b, tol, maxit, M1, M2, x0) specifies the initial guess. If x0 is [], then pcg uses the default, an all-zero vector.

pcg(afun, b, tol, maxit, mlfun, m2fun, x0, p1, p2, ...) passes parameters p1, p2, ... to functions afun(x, p1, p2, ...), mlfun(x, p1, p2, ...), and m2fun(x, p1, p2, ...).

[x, flag] = pcg(A, b, tol, maxit, M1, M2, x0) also returns a convergence flag.

Flag	Convergence
0	pcg converged to the desired tolerance tol within maxit iterations.
1	pcg iterated maxit times but did not converge.
2	Preconditioner M was ill-conditioned.
3	pcg stagnated. (Two consecutive iterates were the same.)
4	One of the scalar quantities calculated during pcg became too small or too large to continue computing.

Whenever fl ag is not 0, the solution x returned is that with minimal norm residual computed over all the iterations. No messages are displayed if the fl ag output is specified.

[x, flag, relres] = pcg(A, b, tol, maxit, M1, M2, x0) also returns the relative residual norm(b-A*x) /norm(b). If flag is 0, relres <= tol.

[x, flag, relres, iter] = pcg(A, b, tol, maxit, M1, M2, x0) also returns the iteration number at which x was computed, where 0 <= iter <= maxit.

[x, flag, relres, iter, resvec] = pcg(A, b, tol, maxit, M1, M2, x0) also returns a vector of the residual norms at each iteration including norm(b-A*x0).

Examples Example 1.

A = gallery('wilk', 21); b = sum(A, 2); tol = 1e-12; maxit = 15; M = diag([10:-1:1 1 1:10]); [x, flag, rr, iter, rv] = pcg(A, b, tol, maxit, M);

Alternatively, use this one-line matrix-vector product function

function y = afun(x, n) y = [0; x(1:n-1)] + [((n-1)/2:-1:0)'; (1:(n-1)/2)'].*x + [x(2:n); 0];

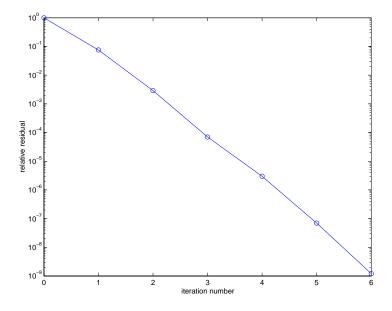
and this one-line preconditioner backsolve function

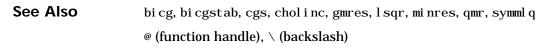
function y = mfun(r, n) y = r . / [((n-1)/2:-1:1)'; 1; (1:(n-1)/2)'];

as inputs to pcg

```
[x1, flag1, rr1, iter1, rv1] = pcg(@afun, b, tol, maxit, @mfun, ...
[], [], 21);
```

Example 2.

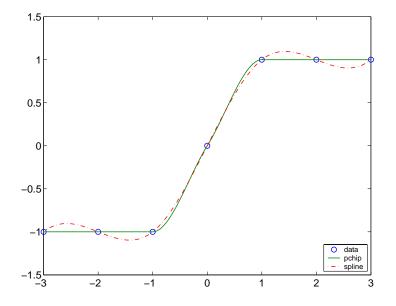

```
A = del sq(numgrid('C', 25));
b = ones(length(A), 1);
[x,flag] = pcg(A, b)
```


fl ag is 1 because pcg does not converge to the default tolerance of 1e-6 within the default 20 iterations.

```
R = cholinc(A, 1e-3);
[x2, flag2, relres2, iter2, resvec2] = pcg(A, b, 1e-8, 10, R', R)
```

fl ag2 is 0 because pcg converges to the tolerance of 1. 2e-9 (the value of rel res2) at the sixth iteration (the value of i ter2) when preconditioned by the incomplete Cholesky factorization with a drop tolerance of 1e-3. resvec2(1) = norm(b) and resvec2(7) = norm(b-A*x2). You can follow the progress of pcg by plotting the relative residuals at each iteration starting from the initial estimate (iterate number 0).

```
semilogy(0:iter2,resvec2/norm(b),'-o')
xlabel('iteration number')
ylabel('relative residual')
```



References [1] Barrett, R., M. Berry, T. F. Chan, et al., *Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods*, SIAM, Philadelphia, 1994.

Purpose	Piecewise Cubic Hermite Interpolating Polynomial (PCHIP)		
Syntax	yi = pchi $p(x, y, xi)$ pp = pchi $p(x, y)$		
Description	yi = pchi p(x, y, xi) returns vector yi containing elements corresponding to the elements of xi and determined by piecewise cubic interpolation within vectors x and y. The vector x specifies the points at which the data y is given. If y is a matrix, then the interpolation is performed for each column of y and yi is length(xi)-by-size(y, 2).		
	pp = pchi p(x, y) returns a piecewise polynomial structure for use by $ppval$. x can be a row or column vector. y is a row or column vector of the same length as x, or a matrix with $l ength(x)$ columns.		
	pchip finds values of an underlying interpolating function $P(x)$ at intermediate points, such that:		
	• On each subinterval $x_k \le x \le x_{k+1}$, $P(x)$ is the cubic Hermite interpolant to the given values and certain slopes at the two endpoints.		
	• $P(x)$ interpolates y , i.e., $P(x_j) = y_j$, and the first derivative $P'(x)$ is continuous. $P''(x)$ is probably not continuous; there may be jumps at the x_j .		
	• The slopes at the x_j are chosen in such a way that $P(x)$ preserves the shape of the data and respects monotonicity. This means that, on intervals where the data are monotonic, so is $P(x)$; at points where the data has a local extremum, so does $P(x)$.		
	Note If <i>y</i> is a matrix, $P(x)$ satisfies the above for each column of <i>y</i> .		
Remarks	 spl i ne constructs S(x) in almost the same way pchi p constructs P(x). However, spl i ne chooses the slopes at the x_j differently, namely to make even S''(x) continuous. This has the following effects: spl i ne produces a smoother result, i.e. S''(x) is continuous. spl i ne produces a more accurate result if the data consists of values of a 		
	smooth function.		

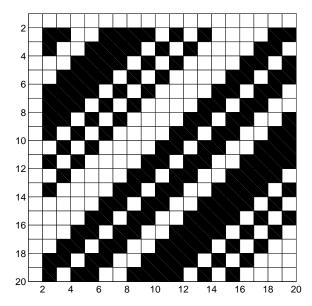
- pchi p has no overshoots and less oscillation if the data are not smooth.
- pchi p is less expensive to set up.
- The two are equally expensive to evaluate.

Examples

 $\begin{array}{l} x = -3:3; \\ y = [-1 \ -1 \ -1 \ 0 \ 1 \ 1 \ 1]; \\ t = -3: \ 01:3; \\ p = pchip(x, y, t); \\ s = spline(x, y, t); \\ plot(x, y, 'o', t, p, '-', t, s, '-.') \\ legend('data', 'pchip', 'spline', 4) \end{array}$

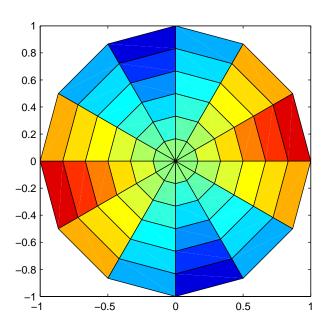
See Also interp1, spline, ppval

References [1] Fritsch, F. N. and R. E. Carlson, "Monotone Piecewise Cubic Interpolation," *SIAM J. Numerical Analysis*, Vol. 17, 1980, pp.238-246.


[2] Kahaner, David, Cleve Moler, Stephen Nash, *Numerical Methods and Software*, Prentice Hall, 1988.

Purpose	Create preparsed pseudocode file (P-file)
Syntax	pcode fun pcode *.m pcode fun1 fun2 pcodeinplace
Description	pcode <i>fun</i> parses the M-file fun. m into the P-file fun. p and puts it into the current directory. The original M-file can be anywhere on the search path.
	$\operatorname{pcode}\ *.\ m$ creates P-files for all the M-files in the current directory.
	pcode fun1 fun2 creates P-files for the listed functions.
	pcode i npl ace creates P-files in the same directory as the M-files. An error occurs if the files can't be created.

pcolor


Purpose	Pseudocolor plot
Syntax	<pre>pcol or (C) pcol or (X, Y, C) h = pcol or()</pre>
Description	A pseudocolor plot is a rectangular array of cells with colors determined by C. MATLAB creates a pseudocolor plot by using each set of four adjacent points in C to define a surface patch (i.e., cell).
	pcol or(C) draws a pseudocolor plot. The elements of C are linearly mapped to an index into the current colormap. The mapping from C to the current colormap is defined by col ormap and caxi s.
	pcol or (X, Y, C) draws a pseudocolor plot of the elements of C at the locations specified by X and Y. The plot is a logically rectangular, two-dimensional grid with vertices at the points $[X(i,j), Y(i,j)]$. X and Y are vectors or matrices that specify the spacing of the grid lines. If X and Y are vectors, X corresponds to the columns of C and Y corresponds to the rows. If X and Y are matrices, they must be the same size as C.
	h = pcol or() returns a handle to a surface graphics object.
Remarks	A pseudocolor plot is a flat surface plot viewed from above. $pcol or(X, Y, C)$ is the same as viewing $surf(X, Y, 0*Z, C)$ using $view([0 \ 90])$.
	When you use shading faceted or shading flat, the constant color of each cell is the color associated with the corner having the smallest <i>x</i> - <i>y</i> coordinates. Therefore, $C(i, j)$ determines the color of the cell in the <i>i</i> th row and <i>j</i> th column. The last row and column of C are not used.
	When you use shading interp, each cell's color results from a bilinear interpolation of the colors at its four vertices and all elements of C are used.
Examples	A Hadamard matrix has elements that are $+1$ and -1 . A colormap with only two entries is appropriate when displaying a pseudocolor plot of this matrix.
	pcolor(hadamard(20)) colormap(gray(2)) axis ij

axis square

A simple color wheel illustrates a polar coordinate system.

n = 6; r = (0:n)'/n; theta = pi*(-n:n)/n; X = r*cos(theta); Y = r*sin(theta); C = r*cos(2*theta); pcol or(X, Y, C)

axis equal tight

AlgorithmThe number of vertex colors for pcol or (C) is the same as the number of cells
for i mage(C). pcol or differs from i mage in that pcol or (C) specifies the colors
of vertices, which are scaled to fit the colormap; changing the axes cl i m
property changes this color mapping. i mage(C) specifies the colors of cells and
directly indexes into the colormap without scaling. Additionally,
pcol or (X, Y, C) can produce parametric grids, which is not possible with i mage.

See Also caxis, i mage, mesh, shading, surf, vi ew

Purpose	Solve initial-boundary value problems for systems of parabolic and elliptic partial differential equations (PDEs) in one space variable and time		
Syntax	<pre>sol = pdepe(m, pdefun, icfun, bcfun, xmesh, tspan) sol = pdepe(m, pdefun, icfun, bcfun, xmesh, tspan, options) sol = pdepe(m, pdefun, icfun, bcfun, xmesh, tspan, options, p1, p2)</pre>		
Arguments	m	A parameter corresponding to the symmetry of the problem. $m can$ be slab = 0, cylindrical = 1, or spherical = 2.	
	pdefun	A function that defines the components of the PDE.	
	icfun	A function that defines the initial conditions.	
	bcfun	A function that defines the boundary conditions.	
	xmesh	A vector $[x0, x1,, xn]$ specifying the points at which a numerical solution is requested for every value in tspan. The elements of xmesh must satisfy $x0 < x1 < < xn$. The length of xmesh must be >= 3.	
	tspan	A vector [t0, t1,, tf] specifying the points at which a solution is requested for every value in xmesh. The elements of tspan must satisfy t0 < t1 < < tf. The length of tspan must be ≥ 3 .	
	opt i ons	Some options of the underlying ODE solver are available in pdepe: Rel Tol , AbsTol , NormControl , I ni ti al Step, and MaxStep. In most cases, default values for these options provide satisfactory solutions. See odeset for details.	
	p1, p2,	Optional parameters to be passed to pdefun, i cfun, and bcfun.	
Description	sol = pdepe(m, pdefun, i cfun, bcfun, xmesh, tspan) solves initial-boundary value problems for systems of parabolic and elliptic PDEs in the one space variable x and time t . The ordinary differential equations (ODEs) resulting from discretization in space are integrated to obtain approximate solutions at times specified in tspan. The pdepe function returns values of the solution on a mesh provided in xmesh.		

pdepe solves PDEs of the form:

$$c\left(x, t, u, \frac{\partial u}{\partial x}\right)\frac{\partial u}{\partial t} = x^{-m} \frac{\partial}{\partial x}\left(x^{m} f\left(x, t, u, \frac{\partial u}{\partial x}\right)\right) + s\left(x, t, u, \frac{\partial u}{\partial x}\right)$$
(2-1)

The PDEs hold for $t_0 \le t \le t_f$ and $a \le x \le b$. The interval [a, b] must be finite. *m* can be 0, 1, or 2, corresponding to slab, cylindrical, or spherical symmetry, respectively. If m > 0, then *a* must be >= 0.

In Equation 2-1, $f(x, t, u, \partial u/\partial x)$ is a flux term and $s(x, t, u, \partial u/\partial x)$ is a source term. The coupling of the partial derivatives with respect to time is restricted to multiplication by a diagonal matrix $c(x, t, u, \partial u/\partial x)$. The diagonal elements of this matrix are either identically zero or positive. An element that is identically zero corresponds to an elliptic equation and otherwise to a parabolic equation. There must be at least one parabolic equation. An element of c that corresponds to a parabolic equation can vanish at isolated values of x if those values of x are mesh points. Discontinuities in c and/or s due to material interfaces are permitted provided that a mesh point is placed at each interface.

For $t = t_0$ and all *x*, the solution components satisfy initial conditions of the form

$$u(x, t_0) = u_0(x)$$
 (2-2)

For all *t* and either x = a or x = b, the solution components satisfy a boundary condition of the form

$$p(x, t, u) + q(x, t) f\left(x, t, u, \frac{\partial u}{\partial x}\right) = 0$$
(2-3)

Elements of q are either identically zero or never zero. Note that the boundary conditions are expressed in terms of the flux f rather than $\partial u / \partial x$. Also, of the two coefficients, only p can depend on u.

In the call sol = pdepe(m, pdefun, i cfun, bcfun, xmesh, tspan):

- m corresponds to *m*.
- xmesh(1) and xmesh(end) correspond to *a* and *b*.
- tspan(1) and tspan(end) correspond to t_0 and t_f .

pdefun computes the terms c, f, and s (Equation 2-1). It has the form
 [c, f, s] = pdefun(x, t, u, dudx)

The input arguments are scalars x and t and vectors u and dudx that approximate the solution u and its partial derivative with respect to x, respectively. c, f, and s are column vectors. c stores the diagonal elements of the matrix c (Equation 2-1).

• i cfun evaluates the initial conditions. It has the form

u = i cfun(x)

When called with an argument x, i cfun evaluates and returns the initial values of the solution components at x in the column vector u.

• bcfun evaluates the terms *p* and *q* of the boundary conditions (Equation 2-3). It has the form

[pl, ql, pr, qr] = bcfun(xl, ul, xr, ur, t)

ul is the approximate solution at the left boundary xl = a and ur is the approximate solution at the right boundary xr = b. pl and ql are column vectors corresponding to p and q evaluated at xl, similarly pr and qr correspond to xr. When m > 0 and a = 0, boundedness of the solution near x = 0 requires that the flux f vanish at a = 0. pdepe imposes this boundary condition automatically and it ignores values returned in pl and ql.

pdepe returns the solution as a multidimensional array sol. $u_i = ui = sol(:,:,i)$ is an approximation to the i th component of the solution vector u. The element ui(j,k) = sol(j,k,i) approximates u_i at (t, x) = (t span(j), xmesh(k)).

ui = sol(j,:,i) approximates component i of the solution at time tspan(j) and mesh points xmesh(:). Use pdeval to compute the approximation and its partial derivative $\partial u_i / \partial x$ at points not included in xmesh. See pdeval for details.

sol = pdepe(m, pdefun, i cfun, bcfun, xmesh, tspan, options) solves as above
with default integration parameters replaced by values in options, an
argument created with the odeset function. Only some of the options of the
underlying ODE solver are available in pdepe: Rel Tol, AbsTol, NormControl,

Remarks

Initial Step, and MaxStep. The defaults obtained by leaving off the input argument options will generally be satisfactory. See odeset for details. sol = pdepe(m, pdefun, i cfun, bcfun, xmesh, tspan, options, p1, p2...) passes the additional parameters p1, p2, ... to the functions pdefun, i cfun, and bcfun. Use options = [] as a placeholder if no options are set. • The arrays xmesh and tspan play different roles in pdepe. tspan – The pdepe function performs the time integration with an ODE solver that selects both the time step and formula dynamically. The elements of t span merely specify where you want answers and the cost depends weakly on the length of t span. **xmesh** – Second order approximations to the solution are made on the mesh specified in xmesh. Generally, it is best to use closely spaced mesh points where the solution changes rapidly. pdepe does *not* select the mesh in *x* automatically. You must provide an appropriate fixed mesh in xmesh. The cost depends strongly on the length of xmesh. When m > 0, it is not necessary to use a fine mesh near x = 0 to account for the coordinate singularity. • The time integration is done with ode15s. pdepe exploits the capabilities of ode15s for solving the differential-algebraic equations that arise when Equation 2-1 contains elliptic equations, and for handling Jacobians with a specified sparsity pattern. After discretization, elliptic equations give rise to algebraic equations. If the elements of the initial conditions vector that correspond to elliptic equations are not "consistent" with the discretization, pdepe tries to adjust them before beginning the time integration. For this reason, the solution returned for the initial time may have a discretization error comparable to that at any other time. If the mesh is sufficiently fine, pdepe can find consistent initial conditions close to the given ones. If pdepe displays a message that it has difficulty finding consistent initial conditions, try refining the mesh. No adjustment is necessary for elements of the initial conditions vector that

correspond to parabolic equations.

Examples Example 1. This example illustrates the straightforward formulation, computation, and plotting of the solution of a single PDE.

$$\pi^2 \frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} \right)$$

This equation holds on an interval $0 \le x \le 1$ for times $t \ge 0$.

The PDE satisfies the initial condition

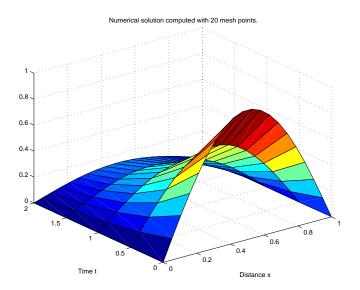
$$u(x,0) = \sin \pi x$$

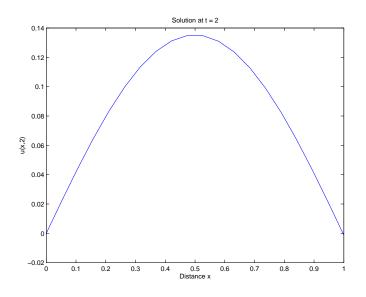
and boundary conditions

$$u(0, t) \equiv 0$$

$$\pi e^{-t} + \frac{\partial u}{\partial x}(1, t) = 0$$

It is convenient to use subfunctions to place all the functions required by pdepe in a single M-file.


function pdex1


```
m = 0;
x = linspace(0, 1, 20);
t = linspace(0, 2, 5);
sol = pdepe(m, @pdex1pde, @pdex1ic, @pdex1bc, x, t);
% Extract the first solution component as u.
u = sol(:, :, 1);
% A surface plot is often a good way to study a solution.
surf(x, t, u)
title('Numerical solution computed with 20 mesh points.')
xlabel('Distance x')
ylabel('Time t')
% A solution profile can also be illuminating.
figure
plot(x, u(end, :))
title('Solution at t = 2')
xlabel('Distance x')
```

```
yl abel ('u(x, 2)')
% -----
function [c, f, s] = pdex1pde(x, t, u, DuDx)
c = pi^{2};
f = DuDx;
s = 0;
% ----
                    -----
function u0 = pdex1ic(x)
u0 = sin(pi * x);
% -----
                          -----
                                     -----
function [pl, ql, pr, qr] = pdex1bc(xl, ul, xr, ur, t)
pl = ul;
ql = 0;
pr = pi * exp(-t);
qr = 1;
```

In this example, the PDE, initial condition, and boundary conditions are coded in subfunctions pdex1pde, pdex1i c, and pdex1bc.

The surface plot shows the behavior of the solution.

The following plot shows the solution profile at the final value of t (i.e., t = 2).

Example 2. This example illustrates the solution of a system of PDEs. The problem has boundary layers at both ends of the interval. The solution changes rapidly for small *t*.

The PDEs are

$$\frac{\partial u_1}{\partial t} = 0.024 \frac{\partial^2 u_1}{\partial x^2} - F(u_1 - u_2)$$
$$\frac{\partial u_2}{\partial t} = 0.170 \frac{\partial^2 u_2}{\partial x^2} + F(u_1 - u_2)$$

where $F(y) = \exp(5.73 y) - \exp(-11.46 y)$.

This equation holds on an interval $0 \le x \le 1$ for times $t \ge 0$.

The PDE satisfies the initial conditions

 $u_1(x, 0) \equiv 1$ $u_2(x, 0) \equiv 0$

and boundary conditions

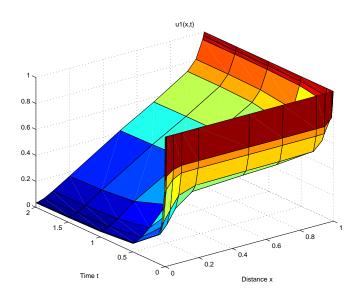
$$\frac{\partial u_1}{\partial x}(0, t) \equiv 0$$
$$u_2(0, t) \equiv 0$$
$$u_1(1, t) \equiv 1$$
$$\frac{\partial u_2}{\partial x}(1, t) \equiv 0$$

In the form expected by pdepe, the equations are

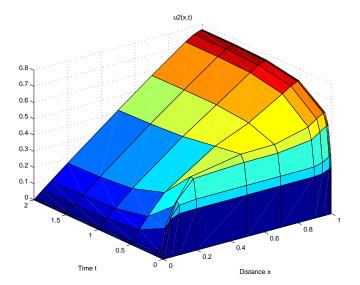
$$\begin{bmatrix} 1\\1 \end{bmatrix} \cdot * \frac{\partial}{\partial t} \begin{bmatrix} u_1\\u_2 \end{bmatrix} = \frac{\partial}{\partial x} \begin{bmatrix} 0.024(\partial u_1/\partial x)\\0.170(\partial u_2/\partial x) \end{bmatrix} + \begin{bmatrix} -F(u_1-u_2)\\F(u_1-u_2) \end{bmatrix}$$

The boundary conditions on the partial derivatives of u have to be written in terms of the flux. In the form expected by pdepe, the left boundary condition is

$$\begin{bmatrix} \mathbf{0} \\ u_2 \end{bmatrix} + \begin{bmatrix} \mathbf{1} \\ \mathbf{0} \end{bmatrix} \cdot \ast \begin{bmatrix} \mathbf{0.024}(\partial u_1 / \partial x) \\ \mathbf{0.170}(\partial u_2 / \partial x) \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}$$


and the right boundary condition is

$$\begin{bmatrix} u_1 - 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \cdot * \begin{bmatrix} 0.024(\partial u_1 / \partial x) \\ 0.170(\partial u_2 / \partial x) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$


The solution changes rapidly for small t. The program selects the step size in time to resolve this sharp change, but to see this behavior in the plots, the example must select the output times accordingly. There are boundary layers in the solution at both ends of [0,1], so the example places mesh points near 0 and 1 to resolve these sharp changes. Often some experimentation is needed to select a mesh that reveals the behavior of the solution.

```
function pdex4
m = 0;
\mathbf{x} = \begin{bmatrix} 0 & 0.005 & 0.01 & 0.05 & 0.1 & 0.2 & 0.5 & 0.7 & 0.9 & 0.95 & 0.99 & 0.995 & 1 \end{bmatrix};
t = [0 \ 0.005 \ 0.01 \ 0.05 \ 0.1 \ 0.5 \ 1 \ 1.5 \ 2];
sol = pdepe(m, @pdex4pde, @pdex4ic, @pdex4bc, x, t);
u1 = sol(:,:,1);
u^2 = sol(:, :, 2);
figure
surf(x, t, u1)
title('u1(x,t)')
xlabel('Distance x')
ylabel('Time t')
figure
surf(x, t, u2)
title('u2(x,t)')
xlabel('Distance x')
ylabel('Time t')
% ------
function [c, f, s] = pdex4pde(x, t, u, DuDx)
c = [1; 1];
f = [0.024; 0.17] . * DuDx;
y = u(1) - u(2);
F = \exp(5.73^*y) - \exp(-11.47^*y);
s = [-F; F];
% -----
function u0 = pdex4ic(x);
u0 = [1; 0];
function [pl, ql, pr, qr] = pdex4bc(xl, ul, xr, ur, t)
pl = [0; ul(2)];
ql = [1; 0];
pr = [ur(1) - 1; 0];
qr = [0; 1];
```

In this example, the PDEs, initial conditions, and boundary conditions are coded in subfunctions pdex4pde, pdex4i c, and pdex4bc.

The surface plots show the behavior of the solution components.

See Also function_handle, pdeval, ode15s, odeset, odeget

References [1] Skeel, R. D. and M. Berzins, "A Method for the Spatial Discretization of Parabolic Equations in One Space Variable," *SIAM Journal on Scientific and Statistical Computing*, Vol. 11, 1990, pp.1-32.

pdeval

Purpose	Evaluate the numerical solution of a PDE using the output of $pdepe$		
Syntax	[uout, d	<pre>[uout, duoutdx] = pdeval(m, xmesh, ui, xout)</pre>	
Arguments	m	Symmetry of the problem: slab = 0, cylindrical = 1, spherical = 2. This is the first input argument used in the call to pdepe.	
	xmesh	A vector $[x0, x1,, xn]$ specifying the points at which the elements of ui were computed. This is the same vector with which pdepe was called.	
	ui	A vector sol (j,:,i) that approximates component i of the solution at time t_f and mesh points xmesh, where sol is the solution returned by pdepe.	
	xout	A vector of points from the interval $[x0,xn]$ at which the interpolated solution is requested.	
Description	[uout, duoutdx] = pdeval (m, x, ui, xout) approximates the solution u_i and its partial derivative $\partial u_i / \partial x$ at points from the interval [x0,xn]. The pdeval function returns the computed values in uout and duoutdx, respectively.		
	Note pdeval evaluates the partial derivative $\partial u_i / \partial x$ rather than the flux Although the flux is continuous, the partial derivative may have a jump at material interface.		
See Also	pdepe		

Purpose	A sample function of two variables.			
Syntax	Z = peaks; Z = peaks(n); Z = peaks(V); Z = peaks(X, Y);			
	<pre>peaks; peaks(N); peaks(V); peaks(X, Y);</pre>			
	[X, Y, Z] = peaks; [X, Y, Z] = peaks(n); [X, Y, Z] = peaks(V);			
Description	peaks is a function of two variables, obtained by translating and scaling Gaussian distributions, which is useful for demonstrating mesh, surf, pcol or, contour, and so on.			
	Z = peaks; returns a 49-by-49 matrix.			
	Z = peaks(n); returns an n-by-n matrix.			
	Z = peaks(V); returns an n-by-n matrix, where $n = length(V)$.			
	Z = peaks(X, Y); evaluates peaks at the given X and Y (which must be the same size) and returns a matrix the same size.			
	$peaks(\dots)$ (with no output argument) plots the peaks function with surf.			
	[X, Y, Z] = peaks(); returns two additional matrices, X and Y, for parametric plots, for example, $surf(X, Y, Z, del 2(Z))$. If not given as input, the underlying matrices X and Y are:			
	[X, Y] = meshgrid(V, V)			
	where V is a given vector, or V is a vector of length n with elements equally spaced from –3 to 3. If no input argument is given, the default n is 49.			
See Also	meshgrid, surf			

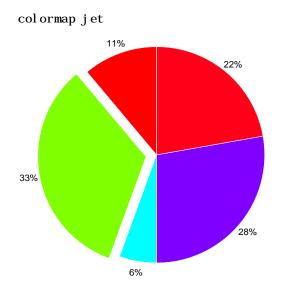
perl

Purpose	Call Perl script using appropriate operating system executable
Syntax	<pre>perl('perlfile') perl('perlfile', arg1, arg2,) result = perl()</pre>
Description	$perl\ ('\ perl\ fi\ l\ e'\)\ calls\ the\ Perl\ script\ perl\ fi\ l\ e,\ using\ the\ appropriate\ operating\ system\ Perl\ executable.$
	perl (' perl file', arg1, arg2, \ldots) calls the Perl script perl file, using the appropriate operating system Perl executable and passes the arguments arg1, arg2, and so on, to perl file.
	result = perl() returns the results of attempted Perl call to result.
See Also	! (exclamation point), dos, system, uni x

perms

Purpose	All possible permutations		
Syntax	P = perms(v)		
Description	P = perms(v), where v is a row vector of length n, creates a matrix whose rows consist of all possible permutations of the n elements of v. Matrix P contains n! rows and n columns.		
Examples	The command $perms(2: 2: 6)$ returns <i>all</i> the permutations of the numbers 2, 4, and 6:		
	2	4	6
	2	6	4
	4	2	6
	4	6	2
	6	4	2
	6	2	4
Limitations	This func	ction is	s only practical for situations where n is less than about 15.
See Also	nchoosek	, perm	ute, randperm

permute


Purpose	Rearrange the dimensions of a multidimensional array				
Syntax	B = permute(A, order)				
Description	B = permute(A, order) rearranges the dimensions of A so that they are in the order specified by the vector order. B has the same values of A but the order of the subscripts needed to access any particular element is rearranged as specified by order. All the elements of order must be unique.				
Remarks	permute and i permute are a generalization of transpose (. ') for multidimensional arrays.				
Examples	<pre>Given any matrix A, the statement permute(A, [2 1]) is the same as A'. For example: A = [1 2; 3 4]; permute(A, [2 1]) ans = 1</pre>				
	X = rand(12, 13, 14); Y = permute(X, [2 3 1]); size(Y) ans = 13 14 12				
See Also	ipermute				

persistent

Purpose	Define persistent variable	
Syntax	persistent X Y Z	
Description	persistent X Y Z defines X, Y, and Z as variables that are local to the function in which they are declared yet their values are retained in memory between calls to the function. Persistent variables are similar to global variables because MATLAB creates permanent storage for both. They differ from global variables in that persistent variables are known only to the function in which they are declared. This prevents persistent variables from being changed by other functions or from the MATLAB command line.	
	Persistent variables are cleared when the M-file is cleared from memory or when the M-file is changed. To keep an M-file in memory until MATLAB quits, use ml ock.	
	If the persistent variable does not exist the first time you issue the persistent stent statement, it is initialized to the empty matrix.	
	It is an error to declare a variable persistent if a variable with the same name exists in the current workspace.	
Remarks	There is no function form of the persistent command (i.e., you cannot use parentheses and quote the variable names).	
See Also	clear, global, mislocked, mlock, munlock	

Purpose	Ratio of a circle's circumference to its diameter, $\boldsymbol{\pi}$
Syntax	pi
Description	pi returns the floating-point number nearest the value of π . The expressions $4^*atan(1)$ and $imag(log(-1))$ provide the same value.
Examples	The expression $\sin(pi)$ is not exactly zero because pi is not exactly π . $\sin(pi)$ ans =
	1. 2246e-16
See Also	ans, eps, i , I nf, j , NaN

Purpose	Pie chart
Syntax	<pre>pi e(X) pi e(X, expl ode) h = pi e()</pre>
Description	pi $e(X)$ draws a pie chart using the data in X. Each element in X is represented as a slice in the pie chart.
	pi $e(X, expl ode)$ offsets a slice from the pie. expl ode is a vector or matrix of zeros and nonzeros that correspond to X. A non-zero value offsets the corresponding slice from the center of the pie chart, so that $X(i,j)$ is offset from the center if $expl ode(i,j)$ is nonzero. expl ode must be the same size as X.
	h = pi e() returns a vector of handles to patch and text graphics objects.
Remarks	The values in X are normalized via X/sum(X) to determine the area of each slice of the pie. If sum(X) \leq 1, the values in X directly specify the are of the pie slices. MATLAB draws only a partial pie if sum(X) <1.
Examples	Emphasize the second slice in the chart by setting its corresponding expl ode element to 1.
	$ x = [1 \ 3 \ 0. \ 5 \ 2. \ 5 \ 2]; explode = [0 \ 1 \ 0 \ 0 \ 0]; pi e(x, explode) $

pi e3

Purpose	Three-dimensional pie chart
Syntax	pi e3(X) pi e3(X, expl ode) h = pi e3()
Description	pi e3(X) draws a three-dimensional pie chart using the data in X. Each element in X is represented as a slice in the pie chart.
	pi e3(X, expl ode) specifies whether to offset a slice from the center of the pie chart. $X(i,j)$ is offset from the center of the pie chart if $expl ode(i,j)$ is nonzero. expl ode must be the same size as X.
	$h \ = \ pi \ e(\ldots)$ returns a vector of handles to patch, surface, and text graphics objects.
Remarks	The values in X are normalized via $X/sum(X)$ to determine the area of each slice of the pie. If $sum(X) \le 1$, the values in X directly specify the area of the pie slices. MATLAB draws only a partial pie if $sum(X) < 1$.
Examples	Offset a slice in the pie chart by setting the corresponding expl ode element to 1:

See Also pi e

Purpose	Moore-Penrose pseudoinverse of a matrix
Syntax	B = pi nv(A) B = pi nv(A, tol)
Definition	The Moore-Penrose pseudoinverse is a matrix B of the same dimensions as A' satisfying four conditions: $A^*B^*A = A$ $B^*A^*B = B$ A^*B is Hermitian B^*A is Hermitian The computation is based on svd(A) and any singular values less than tol are treated as zero.
Description	 B = pi nv(A) returns the Moore-Penrose pseudoinverse of A. B = pi nv(A, tol) returns the Moore-Penrose pseudoinverse and overrides the
	default tolerance, max(size(A))*norm(A)*eps.
Examples	If A is square and not singular, then $pi nv(A)$ is an expensive way to compute $i nv(A)$. If A is not square, or is square and singular, then $i nv(A)$ does not exist. In these cases, $pi nv(A)$ has some of, but not all, the properties of $i nv(A)$.
	If A has more rows than columns and is not of full rank, then the overdetermined least squares problem
	minimize norm(A*x-b)
	does not have a unique solution. Two of the infinitely many solutions are
	x = pi nv(A) *b
	and
	$\mathbf{y} = \mathbf{A} \mathbf{b}$
	These two are distinguished by the facts that $norm(x)$ is smaller than the norm of any other solution and that y has the fewest possible nonzero components.
	For example, the matrix generated by

A = magic(8); A = A(:, 1:6)

is an 8-by-6 matrix that happens to have rank(A) = 3.

=					
64	2	3	61	60	6
9	55	54	12	13	51
17	47	46	20	21	43
40	26	27	37	36	30
32	34	35	29	28	38
41	23	22	44	45	19
49	15	14	52	53	11
8	58	59	5	4	62

The right-hand side is b = 260 * ones(8, 1),

 $\begin{array}{rrrr} b &=& \\ & 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \\ 260 \end{array}$

А

The scale factor 260 is the 8-by-8 magic sum. With all eight columns, one solution to $A^*x = b$ would be a vector of all 1's. With only six columns, the equations are still consistent, so a solution exists, but it is not all 1's. Since the matrix is rank deficient, there are infinitely many solutions. Two of them are

x = pi nv(A) * b

which is

and

y = A b

which produces this result.

Warning: Rank deficient, rank = 3 tol = 1.8829e-013. y = 4.0000 5.0000 0 0 0 -1.0000

Both of these are exact solutions in the sense that norm(A*x-b) and norm(A*y-b) are on the order of roundoff error. The solution x is special because

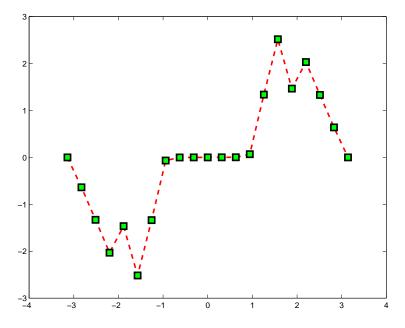
norm(x) = 3.2817

is smaller than the norm of any other solution, including

norm(y) = 6.4807

On the other hand, the solution **y** is special because it has only three nonzero components.

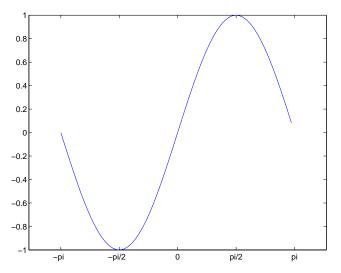
See Also i nv, qr, rank, svd


planerot

Purpose	Givens plane rotation
Syntax	[G, y] = planerot(x)
Description	$[G, y] = planerot(x)$ where x is a 2-component column vector, returns a 2-by-2 orthogonal matrix G so that $y = G^*x$ has $y(2) = 0$.
Examples	$x = [3 \ 4];$ [G, y] = pl anerot (x') G = 0.6000 0.8000 -0.8000 0.6000
	y = 5 0
See Also	qrdel ete, qri nsert

Purpose	Linear 2–D plot
Syntax	<pre>pl ot (Y) pl ot (X1, Y1,) pl ot (X1, Y1, Li neSpec,) pl ot (, 'PropertyName', PropertyVal ue,) h = pl ot ()</pre>
Description	pl ot (Y) plots the columns of Y versus their index if Y is a real number. If Y is complex, pl ot (Y) is equivalent to pl ot (real (Y), i mag(Y)). In all other uses of pl ot, the imaginary component is ignored.
	pl ot(X1, Y1,) plots all lines defined by Xn versus Yn pairs. If only Xn or Yn is a matrix, the vector is plotted versus the rows or columns of the matrix, depending on whether the vector's row or column dimension matches the matrix.
	pl ot (X1, Y1, Li neSpec,) plots all lines defined by the Xn, Yn, Li neSpec triples, where Li neSpec is a line specification that determines line type, marker symbol, and color of the plotted lines. You can mix Xn, Yn, Li neSpec triples with Xn, Yn pairs: pl ot (X1, Y1, X2, Y2, Li neSpec, X3, Y3).
	pl ot(, ' <i>PropertyName</i> ', PropertyVal ue,) sets properties to the specified property values for all line graphics objects created by pl ot. (See the "Examples" section for examples.)
	h = pl ot() returns a column vector of handles to line graphics objects, one handle per line.
Remarks	If you do not specify a color when plotting more than one line, pl ot automatically cycles through the colors in the order specified by the current axes Col orOrder property. After cycling through all the colors defined by Col orOrder, pl ot then cycles through the line styles defined in the axes Li neStyl eOrder property.
	Note that, by default, MATLAB resets the Col orOrder and Li neStyl eOrder properties each time you call pl ot. If you want changes you make to these properties to persist, then you must define these changes as default values. For example,

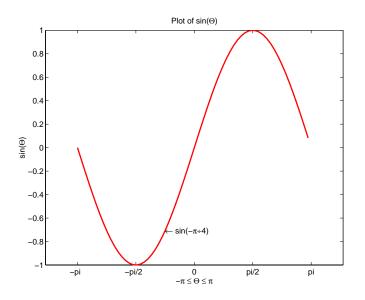
	<pre>set(0, 'DefaultAxesColorOrder', [0 0 0], 'DefaultAxesLineStyleOrder', '- :')</pre>
	sets the default Col orOrder to use only the color black and sets the Li neStyl eOrder to use solid, dash-dot, dash-dash, and dotted line styles.
	Additional Information
	• See the "Creating 2-D Graphs" and "Labeling Graphs" in <i>Using MATLAB Graphics</i> for more information on plotting.
	• See LineSpec for more information on specifying line styles and colors.
Examples	Specifying the Color and Size of Markers You can also specify other line characteristics using graphics properties (see 1 i ne for a description of these properties):
	• Li neWi dth – specifies the width (in points) of the line.
	• MarkerEdgeCol or – specifies the color of the marker or the edge color for filled markers (circle, square, diamond, pentagram, hexagram, and the four triangles).
	• MarkerFaceCol or – specifies the color of the face of filled markers.
	• MarkerSi ze – specifies the size of the marker in units of points.
	For example, these statements,
	x = -pi: pi / 10: pi; y = tan(sin(x)) - sin(tan(x)); pl ot(x, y, 'rs', 'LineWidth', 2,


' MarkerEdgeCol or', 'k',... 'MarkerFaceCol or', 'g',... 'MarkerSi ze', 10) produce this graph.

Specifying Tick Mark Location and Labeling

You can adjust the axis tick-mark locations and the labels appearing at each tick. For example, this plot of the sine function relabels the x-axis with more meaningful values,

```
x = -pi:.1:pi;
y = sin(x);
plot(x, y)
set(gca, 'XTick', -pi:pi/2:pi)
set(gca, 'XTickLabel', {'-pi', '-pi/2', '0', 'pi/2', 'pi'})
```



Now add axis labels and annotate the point -pi/4, sin(-pi/4).

Adding Titles, Axis Labels, and Annotations

MATLAB enables you to add axis labels and titles. For example, using the graph from the previous example, add an x- and y-axis label,

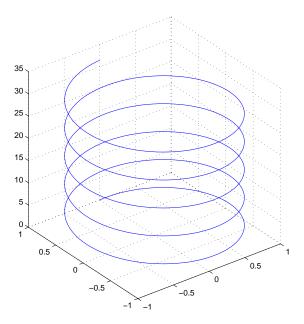
Now change the line color to red by first finding the handle of the line object created by pl ot and then setting its Col or property. In the same statement, set the Li neWi dth property to 2 points.

```
set(findobj(gca, 'Type', 'line', 'Color', [0 0 1]),...
'Color', 'red',...
'LineWidth', 2)
```


See Alsoaxis, bar, grid, hold, legend, line, LineSpec, loglog, plotyy, semilogx,
semilogy, subplot, title, xlabel, xlim, ylabel, ylim, zlabel, zlim, stem

See the text String property for a list of symbols and how to display them.

See the Plot Editor for information on plot annotation tools in the figure window toolbar.

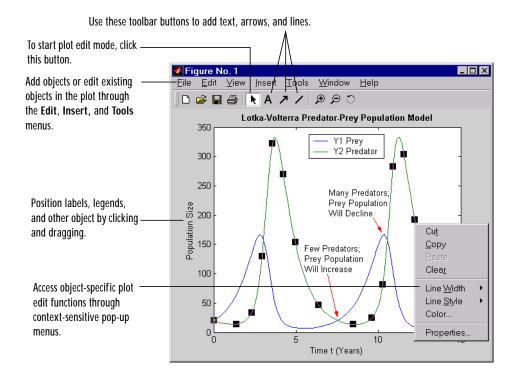

See Basic Plots and Graphs for related functions.

plot3

Purpose	Linear 3-D plot
Syntax	<pre>pl ot3(X1, Y1, Z1,) pl ot3(X1, Y1, Z1, Li neSpec,) pl ot3(, 'PropertyName', PropertyVal ue,) h = pl ot3()</pre>
Description	The pl ot 3 function displays a three-dimensional plot of a set of data points.
	pl ot $3(X1, Y1, Z1,)$, where X1, Y1, Z1 are vectors or matrices, plots one or more lines in three-dimensional space through the points whose coordinates are the elements of X1, Y1, and Z1.
	pl ot $3(X1, Y1, Z1, Li neSpec,)$ creates and displays all lines defined by the Xn, Yn, Zn, Li neSpec quads, where Li neSpec is a line specification that determines line style, marker symbol, and color of the plotted lines.
	pl ot3(, ' <i>PropertyName</i> ', PropertyVal ue,) sets properties to the specified property values for all Line graphics objects created by $pl ot3$.
	h = plot3() returns a column vector of handles to line graphics objects, with one handle per line.
Remarks	If one or more of X1, Y1, Z1 is a vector, the vectors are plotted versus the rows or columns of the matrix, depending whether the vectors' lengths equal the number of rows or the number of columns.
	You can mix Xn, Yn, Zn triples with Xn, Yn, Zn, <i>Li neSpec</i> quads, for example,
	pl ot 3(X1, Y1, Z1, X2, Y2, Z2, Li neSpec, X3, Y3, Z3)
	See Li neSpec and pl ot for information on line types and markers.
Examples	Plot a three-dimensional helix.
	<pre>t = 0: pi /50: 10*pi; pl ot 3(si n(t), cos(t), t) grid on</pre>

plot3

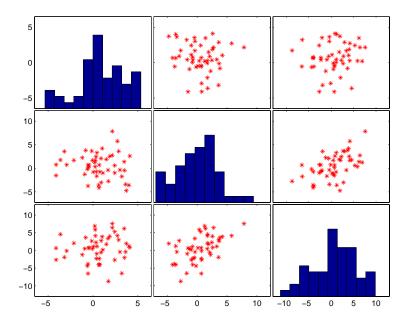
plotedit


Purpose	Start plot edit mode to allow editing and annotation of plots
Syntax	<pre>plotedit on plotedit off plotedit('state') plotedit(h) plotedit(h, 'state')</pre>
Description	pl otedit on starts plot edit mode for the current figure, allowing you to use a graphical interface to annotate and edit plots easily. In plot edit mode, you can label axes, chang line styles, and adding text, line, and arrow annotations.
	pl otedit off ends plot mode for the current figure. pl otedit toggles the plot edit mode for the current figure.
	pl otedit(h) toggles the plot edit mode for the figure specified by figure handle h.
	pl otedit('state') specifies the pl otedit state for the current figure. Values for state can be as shown.

Value for state	Description
on	Starts plot edit mode
off	Ends plot edit mode
showtool smenu	Displays the Tools menu in the menu bar
hi detool smenu	Removes the Tools menu from the menu bar

Note hi detool smenu is intended for GUI developers who do not want the **Tools** menu to appear in applications that use the figure window.

 $pl\,otedi\,t\,(h,\,'\,state'\,)\,$ specifies the $pl\,otedi\,t\,\,state$ for figure handle h.

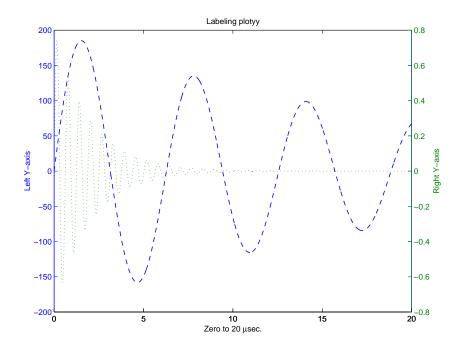

Remarks Plot Editing Mode Graphical Interface Components

Examples	Start plot edit mode for figure 2:
	plotedit(2)
	End plot edit mode for figure 2:
	<pre>plotedit(2, 'off')</pre>
	Hide the Tools menu for the current figure:
	plotedit('hidetoolsmenu')
See Also	axes, line, open, plot, print, saveas, text, propedit

plotmatrix

Purpose	Draw scatter plots
Syntax	plotmatrix(X,Y) plotmatrix(, 'LineSpec') [H, AX, BigAx, P] = plotmatrix()
Description	pl otmatri $x(X, Y)$ scatter plots the columns of X against the columns of Y. If X is <i>p</i> -by- <i>m</i> and Y is <i>p</i> -by- <i>n</i> , pl otmatri x produces an <i>n</i> -by- <i>m</i> matrix of axes. pl otmatri $x(Y)$ is the same as pl otmatri $x(Y, Y)$ except that the diagonal is replaced by hi st(Y(:, i)).
	plotmatrix(, 'LineSpec') uses a LineSpec to create the scatter plot. The default is '.'.
	[H, AX, BigAx, P] = plotmatrix() returns a matrix of handles to the objects created in H, a matrix of handles to the individual subaxes in AX, a handle to a big (invisible) axes that frames the subaxes in BigAx, and a matrix of handles for the histogram plots in P. BigAx is left as the current axes so that a subsequent title, xlabel, or ylabel commands are centered with respect to the matrix of axes.
Examples	Generate plots of random data.
	x = randn(50, 3); y = x*[-1 2 1; 2 0 1; 1 -2 3;]'; plotmatrix(y, '*r')

scatter, scatter3

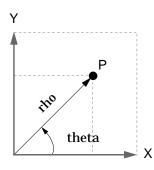

plotyy

Purpose	Create graphs with y axes on both left and right side
Syntax	<pre>pl otyy(X1, Y1, X2, Y2) pl otyy(X1, Y1, X2, Y2, 'function') pl otyy(X1, Y1, X2, Y2, 'function1', 'function2') [AX, H1, H2] = pl otyy()</pre>
Description	pl otyy(X1, Y1, X2, Y2) plots X1 versus Y1 with y-axis labeling on the left and plots X2 versus Y2 with y-axis labeling on the right.
	pl otyy(X1, Y1, X2, Y2, 'function') uses the plotting function specified by the string 'function' instead of $pl ot$ to produce each graph. 'function' can be $pl ot$, semilogx, semilogy, loglog, stem or any MATLAB function that accepts the syntax:
	h = function(x, y)
	pl otyy(X1, Y1, X2, Y2, 'functi on1', 'functi on2') uses functi on1(X1, Y1) to plot the data for the left axis and functi on2(X2, Y2) to plot the data for the right axis.
	[AX, H1, H2] = plotyy() returns the handles of the two axes created in AX and the handles of the graphics objects from each plot in H1 and H2. AX(1) is the left axes and AX(2) is the right axes.
Examples	This example graphs two mathematical functions using pl ot as the plotting function. The two y-axes enable you to display both sets of data on one graph even though relative values of the data are quite different.
	$ \begin{array}{l} x &= 0: \ 0. \ 01: \ 20; \\ y1 &= \ 200^* exp(-0. \ 05^* x) \ . \ * sin(x); \\ y2 &= \ 0. \ 8^* exp(-0. \ 5^* x) \ . \ * sin(10^* x); \\ [AX, H1, H2] &= \ plotyy(x, \ y1, \ x, \ y2, \ 'plot'); \end{array} $
	You can use the handles returned by plotyy to label the axes and set the line styles used for plotting. With the axes handles you can specify the YLabel properties of the left- and right-side y-axis:
	<pre>set(get(AX(1), 'Ylabel'), 'String', 'Left Y-axis') set(get(AX(2), 'Ylabel'), 'String', 'Right Y-axis')</pre>
	Use the xl abel and title commands to label the x-axis and add a title:

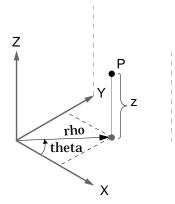
```
xlabel('Zero to 20 \musec.')
title('Labeling plotyy')
```

Use the line handles to set the ${\tt Li\,neStyl\,e}$ properties of the left- and right-side plots:

```
set(H1, 'LineStyle', '--')
set(H2, 'LineStyle', ':')
```



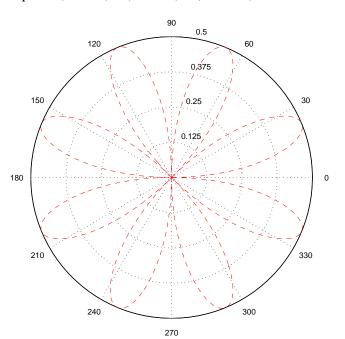
See Also plot, loglog, semilogx, semilogy, axes properties: XAxi sLocation, YAxi sLocation


The axes chapter in the *Using MATLAB Graphics* manual for information on multi-axis axes.

pol2cart

Purpose	Transform polar or cylindrical coordinates to Cartesian
Syntax	[X, Y] = pol 2cart (THETA, RHO) [X, Y, Z] = pol 2cart (THETA, RHO, Z)
Description	[X, Y] = pol 2cart (THETA, RHO) transforms the polar coordinate data stored in corresponding elements of THETA and RHO to two-dimensional Cartesian, or <i>xy</i> , coordinates. The arrays THETA and RHO must be the same size (or either can be scalar). The values in THETA must be in radians.
	[X, Y, Z] = pol 2cart (THETA, RHO, Z) transforms the cylindrical coordinate data stored in corresponding elements of THETA, RHO, and Z to three-dimensional Cartesian, or <i>xyz</i> , coordinates. The arrays THETA, RHO, and Z must be the same size (or any can be scalar). The values in THETA must be in radians.
Algorithm	The mapping from polar and cylindrical coordinates to Cartesian coordinates is:

Polar to Cartesian Mapping theta = atan2(y, x)rho = $sqrt(x. ^2 + y. ^2)$



Cylindrical to Cartesian Mapping

theta = atan2(y, x)rho = $sqrt(x. ^2 + y. ^2)$ z = z

See Also cart2pol, cart2sph, sph2cart

Purpose	Plot polar coordinates			
Syntax	pol ar(theta, rho) pol ar(theta, rho, Li neSpec)			
Description	The pol ar function accepts polar coordinates, plots them in a Cartesian plane, and draws the polar grid on the plane.			
	pol $ar(theta, rho)$ creates a polar coordinate plot of the angle theta versus the radius rho. theta is the angle from the <i>x</i> -axis to the radius vector specified in radians; rho is the length of the radius vector specified in dataspace units.			
	pol ar(theta, rho, Li neSpec) Li neSpec specifies the line type, plot symbol, and color for the lines drawn in the polar plot.			
Examples	Create a simple polar plot using a dashed, red line: t = 0:.01:2*pi;			

polar(t, sin(2*t).*cos(2*t), '--r')

_						
Purpose	Polynomial with specified roots					
Syntax	p = poly(A) p = poly(r)					
Description	$p = poly(A)$ where A is an n-by-n matrix returns an n+1 element row vector whose elements are the coefficients of the characteristic polynomial, $det(sl - A)$. The coefficients are ordered in descending powers: if a vector c has n+1 components, the polynomial it represents is $c_1s^n + + c_ns + c_{n+1}$					
	p = poly(r) where r is a vector returns a row vector whose elements are the coefficients of the polynomial whose roots are the elements of r.					
Remarks	Note the relationship of this command to					
	r = roots(p)					
	which returns a column vector whose elements are the roots of the polynomial specified by the coefficients row vector p . For vectors, roots and $poly$ are inverse functions of each other, up to ordering, scaling, and roundoff error.					
Examples	MATLAB displays polynomials as row vectors containing the coefficients ordered by descending powers. The characteristic equation of the matrix					
	A =					
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
	<pre>is returned in a row vector by pol y:</pre>					
	p = 1 - 6 - 72 - 27					
	The roots of this polynomial (eigenvalues of matrix ${\tt A})$ are returned in a column vector by <code>roots</code> :					

r = roots(p)

r = 12. 1229 - 5. 7345 - 0. 3884

Algorithm

The algorithms employed for poly and roots illustrate an interesting aspect of the modern approach to eigenvalue computation. poly(A) generates the characteristic polynomial of A, and roots(poly(A)) finds the roots of that polynomial, which are the eigenvalues of A. But both poly and roots use eig, which is based on similarity transformations. The classical approach, which characterizes eigenvalues as roots of the characteristic polynomial, is actually reversed.

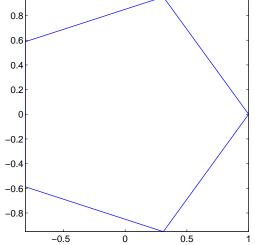
If A is an n-by-n matrix, pol y(A) produces the coefficients c(1) through c(n+1), with c(1) = 1, in

$$det(\lambda I - A) = c_1 \lambda^n + \dots + c_n \lambda + c_{n+1}$$

The algorithm is

 $\begin{array}{l} z \ = \ eig(A); \\ c \ = \ zeros(n+1, 1); \ c(1) \ = \ 1; \\ for \ j \ = \ 1: n \\ c(2:j+1) \ = \ c(2:j+1) - z(j) \ ^*c(1:j); \\ end \end{array}$

This recursion is easily derived by expanding the product.


 $(\lambda - \lambda_1)(\lambda - \lambda_2)...(\lambda - \lambda_n)$

It is possible to prove that pol y(A) produces the coefficients in the characteristic polynomial of a matrix within roundoff error of A. This is true even if the eigenvalues of A are badly conditioned. The traditional algorithms for obtaining the characteristic polynomial, which do not use the eigenvalues, do not have such satisfactory numerical properties.

See Also conv, pol yval, resi due, roots

polyarea

Purpose	Area of polygon					
Syntax	<pre>A = polyarea(X, Y) A = polyarea(X, Y, dim)</pre>					
Description	A = pol yarea(X, Y) returns the area of the polygon specified by the vertices in the vectors X and Y.					
	If X and Y are matrices of the same size, then polyarea returns the area of polygons defined by the columns X and Y.					
	If X and Y are multidimensional arrays, pol yarea returns the area of the polygons in the first nonsingleton dimension of X and Y.					
	A = polyarea(X, Y, dim) operates along the dimension specified by scalar dim.					
Examples	L = linspace(0, 2. *pi, 6); xv = cos(L)'; yv = sin(L)'; xv = [xv ; xv(1)]; yv = [yv ; yv(1)]; A = polyarea(xv, yv); plot(xv, yv); title(['Area = ' num2str(A)]); axis image					
	Area = 2.3776					
	0.8					

convhull, inpolygon, rectint

polyder

Purpose	Polynomial derivative				
Syntax	<pre>k = polyder(p) k = polyder(a, b) [q, d] = polyder(b, a)</pre>				
Description	The polyder function calculates the derivative of polynomials, polynomial products, and polynomial quotients. The operands a, b, and p are vectors whose elements are the coefficients of a polynomial in descending powers.				
	k = polyder(p) returns the derivative of the polynomial p.				
	$k \ = \ pol \ yder (a, b) \ returns the derivative of the product of the polynomials a and b.$				
	[q, d] = polyder(b, a) returns the numerator q and denominator d of the derivative of the polynomial quotient b/a .				
Examples	The derivative of the product				
	$(3x^2+6x+9)(x^2+2x)$				
	is obtained with				
	$a = [3 \ 6 \ 9];$ $b = [1 \ 2 \ 0];$ k = pol yder(a, b) k = 12 36 42 18				
	This result represents the polynomial				
	$12 x^3 + 36 x^2 + 42 x + 18$				
C					

See Also conv, deconv

Purpose	Polynomial eigenvalue problem		
Syntax	[X, e] = pol yei g(A0, A1,, Ap) e = pol yei g(A0, A1,, Ap)		
Description	$[X,e]=polyeig(A0,A1,\ldotsAp)$ solves the polynomial eigenvalue problem of degree p		
	$(A_0 + \lambda A_1 + \dots + \lambda^P A_p) x = 0$		
	where polynomial degree p is a non-negative integer, and A0, A1, Ap are input matrices of order n. Output matrix X, of size n-by-n*p, contains eigenvectors in its columns. Output vector e, of length $n*p$, contains eigenvalues.		
	If l ambda is the j th eigenvalue in e, and x is the j th column of eigenvectors in X, then $(A0 + l ambda*A1 + + l ambda^p*Ap)*x$ is approximately 0.		
	e = pol yei g(A0, A1,, Ap) is a vector of length $n*p$ whose elements are the eigenvalues of the polynomial eigenvalue problem.		
Remarks	Based on the values of p and n, pol yeig handles several special cases:		
	 p = 0, or pol yei g(A) is the standard eigenvalue problem: ei g(A). p = 1, or pol yei g(A, B) is the generalized eigenvalue problem: ei g(A, -B). n = 1, or pol yei g(a0,a1,ap) for scalars a0, a1, ap is the standard polynomial problem: roots([ap a1 a0]). 		
Algorithm	If both A0 and Ap are singular, the problem is potentially ill posed; solutions might not exist or they might not be unique. In this case, the computed solutions may be inaccurate. pol yei g attempts to detect this situation and display an appropriate warning message. If either one, but not both, of A0 and Ap is singular, the problem is well posed but some of the eigenvalues may be zero or infinite (Inf).		
	The pol yei g function uses the QZ factorization to find intermediate results in the computation of generalized eigenvalues. It uses these intermediate results to determine if the eigenvalues are well-determined. See the descriptions of eig and qz for more on this.		

polyeig

See Also ei g, qz

Purpose	Polynomial curve fitting			
Syntax	<pre>p = polyfit(x, y, n) [p, S] = polyfit(x, y, n) [p, S, mu] = polyfit(x, y, n)</pre>			
Description	p = polyfit(x, y, n) finds the coefficients of a polynomial $p(x)$ of degree n that fits the data, $p(x(i))$ to $y(i)$, in a least squares sense. The result p is a row vector of length n+1 containing the polynomial coefficients in descending powers			
	$p(x) = p_1 x^n + p_2 x^{n-1} + \dots + p_n x + p_{n+1}$			
	[p, S] = polyfit(x, y, n) returns the polynomial coefficients p and a structure S for use with polyval to obtain error estimates or predictions. If the errors in the data y are independent normal with constant variance, polyval produces error bounds that contain at least 50% of the predictions.			
	[p, S, mu] = polyfit(x, y, n) finds the coefficients of a polynomial in			
	$\hat{X} = \frac{X - \mu_1}{\mu_2}$			
	where $\mu_1 = \text{mean}(x)$ and $\mu_2 = \text{std}(x)$. mu is the two-element vector $[\mu_1, \mu_2]$. This centering and scaling transformation improves the numerical properties of both the polynomial and the fitting algorithm.			
Examples	This example involves fitting the error function, $erf(x)$, by a polynomial in x. This is a risky project because $erf(x)$ is a bounded function, while polynomials are unbounded, so the fit might not be very good.			
	First generate a vector of x points, equally spaced in the interval $[0, 2.5]$; then evaluate $erf(x)$ at those points.			
	x = (0: 0.1: 2.5)'; y = erf(x);			
	The coefficients in the approximating polynomial of degree 6 are			
	p = polyfit(x, y, 6)			

p =

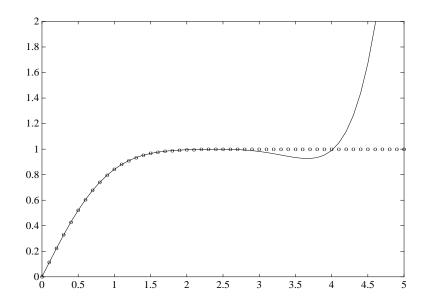
0. 0084 - 0. 0983 0. 4217 - 0. 7435 0. 1471 1. 1064 0. 0004 There are seven coefficients and the polynomial is

 $0.0084 x^6 - 0.0983 x^5 + 0.4217 x^4 - 0.7435 x^3 + 0.1471 x^2 + 1.1064 x + 0.0004$

To see how good the fit is, evaluate the polynomial at the data points with

f = pol yval (p, x);

A table showing the data, fit, and error is


table = [x y f y-f]

```
table =
```

0	0	0.0004	- 0. 0004
0.1000	0. 1125	0. 1119	0.0006
0. 2000	0. 2227	0. 2223	0.0004
0. 3000	0. 3286	0. 3287	- 0. 0001
0.4000	0. 4284	0. 4288	- 0. 0004
2.1000	0.9970	0. 9969	0.0001
2.2000	0. 9981	0. 9982	- 0. 0001
2.3000	0. 9989	0. 9991	- 0. 0003
2.4000	0. 9993	0. 9995	- 0. 0002
2.5000	0. 9996	0. 9994	0.0002

So, on this interval, the fit is good to between three and four digits. Beyond this interval the graph shows that the polynomial behavior takes over and the approximation quickly deteriorates.

x = (0: 0.1: 5)'; y = erf(x); f = polyval(p, x); plot(x, y, 'o', x, f, '-') axis([0 5 0 2])

Algorithm The polyfit M-file forms the Vandermonde matrix, *V*, whose elements are powers of *x*.

 $V_{i, j} = X_i^{n-j}$

It then uses the backslash operator, $\$, to solve the least squares problem

 $Vp \cong y$

You can modify the M-file to use other functions of x as the basis functions.

See Also pol y, pol yval, roots

polyint

Purpose	Integrate polynomial analytically
Syntax	pol yi nt (p, k) pol yi nt (p)
Description	pol yi nt (p, k) returns a polynomial representing the integral of polynomial p, using a scalar constant of integration k.
	pol yi nt (p) assumes a constant of integration $k=0$.
See Also	polyder, polyval, polyvalm, polyfit

Purpose	Polynomial evaluation
Syntax	<pre>y = polyval(p, x) y = polyval(p, x, [], mu) [y, delta] = polyval(p, x, S) [y, delta] = polyval(p, x, S, mu)</pre>
Description	y = pol yval (p, x) returns the value of a polynomial of degree n evaluated at x. The input argument p is a vector of length n+1 whose elements are the coefficients in descending powers of the polynomial to be evaluated.
	$y = p_1 x^n + p_2 x^{n-1} + \dots + p_n x + p_{n+1}$
	${\bf x}$ can be a matrix or a vector. In either case, polyval evaluates ${\bf p}$ at each element of ${\bf x}.$
	y = pol yval (p, x, [], mu) uses $\hat{x} = (x - \mu_1)/\mu_2$ in place of x. In this equation, $\mu_1 = mean(x)$ and $\mu_2 = std(x)$. The centering and scaling parameters mu = $[\mu_1, \mu_2]$ are optional output computed by pol yfit.
	[y, delta] = polyval(p, x, S) and [y, delta] = polyval(p, x, S, mu) use the optional output structure S generated by polyfit to generate error estimates, y±delta. If the errors in the data input to polyfit are independent normal with constant variance, y±delta contains at least 50% of the predictions.
Remarks	The polyval $m(p, x)$ function, with x a matrix, evaluates the polynomial in a matrix sense. See polyval m for more information.
Examples	The polynomial $p(x) = 3x^2 + 2x + 1$ is evaluated at $x = 5$, 7, and 9 with
	p = [3 2 1]; polyval (p, [5 7 9])
	which results in
	ans =
	86 162 262
	For another example, see not vfit

For another example, see $\operatorname{pol}\operatorname{yfit}$.

polyval

See Also polyfit, polyvalm

polyvalm

Purpose	Matrix polynomial evaluation				
Syntax	Y = polyva	al m(p	, X)		
Description	Y = pol yval m(p, X) evaluates a polynomial in a matrix sense. This is the same as substituting matrix X in the polynomial p.				
	Polynomial p is a vector whose elements are the coefficients of a polynomial in descending powers, and X must be a square matrix.				
Examples	The Pascal matrices are formed from Pascal's triangle of binomial coefficients. Here is the Pascal matrix of order 4.				
	X = pascal(4)				
	X =				
	1	1	1 3 6	1	
	1	2	3	4	
	1	3	6	10	
	1	4	10	20	
	Its character $p = po$			nomia	l can be generated with the $\operatorname{pol} y$ function.

p = pol y(X) $p = 1 - 29 \quad 72 - 29 \quad 1$

This represents the polynomial $x^4 - 29x^3 + 72x^2 - 29x + 1$.

Pascal matrices have the curious property that the vector of coefficients of the characteristic polynomial is palindromic; it is the same forward and backward.

Evaluating this polynomial at each element is not very interesting.

pol yval (p, X)						
ans =						
16	16	16	16			
16	15	- 140	- 563			
16	- 140	- 2549	- 12089			
16	- 563	- 12089	- 43779			

But evaluating it in a matrix sense is interesting.

pol yval m(p, X)

ans =			
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

The result is the zero matrix. This is an instance of the Cayley-Hamilton theorem: a matrix satisfies its own characteristic equation.

See Also polyfit, polyval

Purpose	Base 2 power and scale floating-point numbers			
Syntax	X = pow2(Y) X = pow2(F, E)			
Description	X = pow2(Y) returns an array X whose elements are 2 raised to the power Y.			
	The result is com	puted quic	$= f * 2^{e}$ for corresponding elements of F and E. Each by simply adding E to the floating-point and E are real and integer arrays, respectively.	
Remarks	This function corresponds to the ANSI C function $l dexp()$ and the IEEE floating-point standard function $scal bn()$.			
Examples	For IEEE arithmetic, the statement $X = pow2(F, E)$ yields the values:			
		2 2 - 51 1024	X 1 pi -3 eps realmax realmin	
See Also	log2, exp, hex2num, real max, real mi n			
	The arithmetic operators $^{\circ}$ and . $^{\circ}$			

ppval

Purpose	Evaluate piecewise polynomial.		
Syntax	v = ppval (pp, xx) v = ppval (xx, pp)		
Description	v = ppval (pp, xx) returns the value at the points xx of the piecewise polynomial contained in pp, as constructed by spl i ne or the spline utility mkpp.		
	v = ppval (xx, pp) returns the same result but can be used with functions like fmi nbnd, fzero and quad that take a function as an argument.		
Examples	Compare the results of integrating the function \cos		
	a = 0; b = 10; int1 = quad(@cos, a, b, [], [])		
	i nt 1 = - 0. 5440		
	with the results of integrating the piecewise polynomial pp that approximates the cosine function by interpolating the computed values x and y .		
	<pre>x = a: b; y = cos(x); pp = spline(x, y); int2 = quad(@ppval, a, b, [], [], pp)</pre>		
	i nt2 = - 0. 5485		
	i nt 1 provides the integral of the cosine function over the interval [a, b], while i nt 2 provides the integral over the same interval of the piecewise polynomial pp.		
See Also	mkpp, spline, unmkpp		

Purpose	Return directory containing preferences, history, and . $\operatorname{i}\operatorname{ni}$ files		
Syntax	prefdir d = prefdir d = prefdir(1)		
Description	prefdir returns the directory that contains preferences for MATLAB and related products (matlab.prf), the command history (history.m), and the MATLAB initialization file (MATLAB.ini).		
	d = prefdir returns the name of the directory containing preferences and related files, but does not ensure its existence.		
	d = prefdir(1) creates a c not exist.	lirectory for preferences a	and related files if one does
Examples	Run		
	prefdi r		
	MATLAB returns		
	ans =		
	C:\WINNT\Profiles\App	olication Data\MathWor	rks\MATLAB\R13
	Running dir for the directo	ory shows	
	dir MATLAB. ini cstprefs. mat	cwdhistory.m history.m launchpad_cache.txt matlab.prf	matlab_help.hst
See Also	"Setting Preferences" in the MATLAB Development Environment documentation		

primes

Purpose	Generate list of prime numbers			
Syntax	p = primes(n)			
Description	p = primes(n) returns a row vector of the prime numbers less than or equal to n. A prime number is one that has no factors other than 1 and itself.			
Examples	p = primes(37)			
	p =			
	2 3 5 7 11 13 17 19 23 29 31 37			
See Also	factor			

Purpose	Create hardcopy output
Syntax	<pre>print print filename print - ddriver print - dformat print - dformat filename print options [pcmd, dev] = printopt</pre>
Description	print and printopt produce hardcopy output. All arguments to the print command are optional. You can use them in any combination or order.
	print sends the contents of the current figure, including bitmap representations of any user interface controls, to the printer using the device and system printing command defined by printopt.
	print filename directs the output to the file designated by filename. If filename does not include an extension, print appends an appropriate extension.
	print -d <i>dri ver</i> prints the figure using the specified printer <i>dri ver</i> , (such as color PostScript). If you omit - d <i>dri ver</i> , print uses the default value stored in printopt. m. The Printer Driver table lists all supported device types.
	pri nt - d <i>format</i> copies the figure to the system clipboard (Windows only). A valid <i>format</i> for this operation is either - dmeta (Windows Enhanced Metafile) or - dbi tmap (Windows Bitmap).
	print - d <i>format</i> filename exports the figure to the specified file using the specified graphics <i>format</i> , (such as TIFF). The Graphics Format table lists all supported graphics-file formats.
	pri nt $-opti$ ons specifies print options that modify the action of the pri nt command. (For example, the -noui option suppresses printing of user interface controls.) The Options section lists available options.

print, printopt

print(...) is the function form of print. It enables you to pass variables for any input arguments. This form is useful passing filenames and handles. See Batch Processing for an example.

[pcmd, dev] = printopt returns strings containing the current system-dependent printing command and output device. printopt is an M-file used by print to produce the hardcopy output. You can edit the M-file printopt. m to set your default printer type and destination.

pcmd and dev are platform-dependent strings. pcmd contains the command that print uses to send a file to the printer. dev contains the printer driver or graphics format option for the print command. Their defaults are platform dependent.

Platform	System Printing Command	Driver or Format
UNIX	lpr -r -s	-dps2
Windows	COPY /B %s LPT1:	–dwi n

Drivers The table below shows the complete list of printer drivers supported by MATLAB. If you do not specify a driver, MATLAB uses the default setting shown in the previous table.

Some of the drivers are available from a product called Ghostscript, which is shipped with MATLAB. The last column indicates when Ghostscript is used.

Some drivers are not available on all platforms. This is noted in the first column of the table.

Printer Driver	PRINT Command Option String	Ghost- Script
Canon BubbleJet BJ10e	- dbj 10e	Yes
Canon BubbleJet BJ200 color	- dbj 200	Yes
Canon Color BubbleJet BJC-70/BJC-600/BJC-4000	- dbj c600	Yes
Canon Color BubbleJet BJC-800	- dbj c800	Yes

Printer Driver	PRINT Command Option String	Ghost- Script
DEC LN03	- dl n03	Yes
Epson and compatible 9- or 24-pin dot matrix print drivers	- depson	Yes
Epson and compatible 9-pin with interleaved lines (triple resolution)	- deps9hi gh	Yes
Epson LQ-2550 and compatible; color (not supported on HP-700)	- depsonc	Yes
Fujitsu 3400/2400/1200	- depsonc	Yes
HP DesignJet 650C color (not supported on Windows or DEC Alpha)	- ddnj 650c	Yes
HP DeskJet 500	- ddj et 500	Yes
HP DeskJet 500C (creates black-and-white output)	- dcdj mono	Yes
HP DeskJet 500C (with 24 bit/pixel color and high-quality Floyd-Steinberg color dithering) (not supported on Windows or DEC Alpha)	- dcdj col or	Yes
HP DeskJet 500C/540C color (not supported on Windows or DEC Alpha)	- dcdj 500	Yes
HP Deskjet 550C color (not supported on Windows or DEC Alpha)	- dcdj 550	Yes
HP DeskJet and DeskJet Plus	- ddeskj et	Yes
HP LaserJet	- dl aserj et	Yes
HP LaserJet+	-dljetplus	Yes
HP LaserJet IIP	-dljet2p	Yes
HP LaserJet III	-dljet3	Yes
HP LaserJet 4.5L and 5P	-dljet4	Yes
HP LaserJet 5 and 6	- dpxl mono	Yes

Printer Driver	PRINT Command Option String	Ghost- Script
HP PaintJet color	- dpai ntj et	Yes
HP PaintJet XL color	- dpj xl	Yes
HP PaintJet XL color	- dpj etxl	Yes
HP PaintJet XL300 color (not supported on Windows or DEC Alpha)	- dpj xl 300	Yes
HPGL for HP 7475A and other compatible plotters. (Renderer cannot be set to Z-buffer.)	- dhpgl	No
IBM 9-pin Proprinter	-dibmpro	Yes
PostScript black and white	- dps	No
PostScript color	-dpsc	No
PostScript Level 2 black and white	- dps2	No
PostScript Level 2 color	-dpsc2	No
Windows color (Windows only)	- dwi nc	No
Windows monochrome (Windows only)	- dwi n	No

Note Generally, Level 2 PostScript files are smaller and render more quickly when printing than Level 1 PostScript files. However, not all PostScript printers support Level 2, so determine the capabilities of your printer before using those drivers. Level 2 PostScript is the default for UNIX. You can change this default by editing the printopt. m file.

Graphics Format Files To save your figure as a graphics-format file, specify a format switch and filename. To set the resolution of the output file for a built-in MATLAB format, use the -r switch. (For example, -r300 sets the output resolution to 300 dots per inch.) The -r switch is also supported for Windows Enhanced Metafiles but is not supported for Ghostscript formats.

The table below shows the supported output formats for exporting from MATLAB and the switch settings to use. In some cases, a format is available both as a MATLAB output filter and as a Ghostscript output filter. The first column indicates this by showing "MATLAB" or "Ghostscript" in parentheses. All formats are supported on both the PC and UNIX platforms.

Graphics Format	Bitmap or Vector	PRINT Command Option String	MATLAB or Ghostscript
BMP Monochrome BMP	Bitmap	- dbmpmono	Ghostscript
BMP 24-bit BMP	Bitmap	- dbmp16m	Ghostscript
BMP 8-bit (256-color) BMP *this format uses a fixed colormap	Bitmap	- dbmp256	Ghostscript
BMP 24-bit	Bitmap	- dbmp	MATLAB
EMF	Vector	-dmeta	MATLAB
EPS black and white	Vector	-deps	MATLAB
EPS color	Vector	-depsc	MATLAB
EPS Level 2 black and white	Vector	- deps2	MATLAB
EPS Level 2 color	Vector	-depsc2	MATLAB
HDF 24-bit	Bitmap	- dhdf	MATLAB
ILL (Adobe Illustrator)	Vector	- di l l	MATLAB
JPEG 24-bit	Bitmap	- dj peg	MATLAB
PBM (plain format) 1-bit	Bitmap	- dpbm	Ghostscript
PBM (raw format) 1-bit	Bitmap	-dpbmraw	Ghostscript
PCX 1-bit	Bitmap	- dpcxmono	Ghostscript
PCX 24-bit color PCX file format, three 8-bit planes	Bitmap	- dpcx24b	Ghostscript

Graphics Format	Bitmap or Vector	PRINT Command Option String	MATLAB or Ghostscript
PCX 8-bit Newer color PCX file format (256-color)	Bitmap	- dpcx256	Ghostscript
PCX Older color PCX file format (EGA/VGA, 16-color)	Bitmap	- dpcx16	Ghostscript
PCX 8-bit	Bitmap	- dpcx	MATLAB
PDF Color PDF file Format		- dpdf	Ghostscript
PGM Portable Graymap (plain format)	Bitmap	- dpgm	Ghostscript
PGM Portable Graymap (raw format)	Bitmap	-dpgmraw	Ghostscript
PNG 24-bit	Bitmap	- dpng	MATLAB
PPM Portable Pixmap, plain format	Bitmap	- dppm	Ghostscript
PPM Portable Pixmap raw format	Bitmap	-dppmraw	Ghostscript
TIFF 24-bit	Bitmap	-dtiff or -dtiffn	MATLAB
TIFF preview for EPS Files	Bitmap	-tiff	

The TIFF image format is supported on all platforms by almost all word processors for importing images. JPEG is a lossy, highly compressed format that is supported on all platforms for image processing and for inclusion into HTML documents on the World Wide Web. To create these formats, MATLAB renders the figure using the Z-buffer rendering method and the resulting bitmap is then saved to the specified file.

Options This table summarizes options that you can specify for print. The second column also shows which tutorial sections contain more detailed information.

The sections listed are located under *Printing and Exporting Figures with MATLAB*.

Option	Description
-adobecset	PostScript only. Use PostScript default character set encoding. See "Early PostScript 1 Printers."
- append	PostScript only. Append figure to existing PostScript file. See "Settings That Are Driver Specific."
- cmyk	PostScript only. Print with CMYK colors instead of RGB. See "Setting CMYK Color."
- d <i>dri ver</i>	Printing only. Printer driver to use. See Drivers table.
-dformat	Exporting only. Graphics format to use. See Graphics Format Files table.
-dsetup	Display the Print Setup dialog.
-fhandle	Handle of figure to print. Note that you cannot specify both this option and the - swi ndowt i tl e option. See "Which Figure Is Printed."
-loose	PostScript and Ghostscript only. Use loose bounding box for PostScript. See "Producing Uncropped Figures."
- noui	Suppress printing of user interface controls. See "Excluding User Interface Controls."
- OpenGL	Render using the OpenGL algorithm. Note that you cannot specify this method in conjunction with - zbuffer or - painters. See "Selecting a Renderer."
-painters	Render using the Painter's algorithm. Note that you cannot specify this method in conjunction with - zbuffer or - OpenGL. See "Selecting a Renderer."
- Pprinter	Specify name of printer to use. See "Selecting Printer."
-rnumber	PostScript and Ghostscript only. Specify resolution in dots per inch. See "Setting the Resolution."

print, printopt

Option	Description
- swi ndowt i tl e	Specify name of Simulink system window to print. Note that you cannot specify both this option and the -f handl e option. See "Which Figure Is Printed."
- V	Windows only. Display the Windows $\mbox{\bf Print}$ dialog box. The v stands for "verbose mode."
-zbuffer	Render using the Z-buffer algorithm. Note that you cannot specify this method in conjunction with - OpenGL or - painters. See "Selecting a Renderer."

Paper Sizes

MATLAB supports a number of standard paper sizes. You can select from the following list by setting the PaperType property of the figure or selecting a supported paper size from the **Print** dialog box.

Property Value	Size (Width-by-Height)
usletter	8.5-by-11 inches
usl egal	11-by-14 inches
tabl oi d	11-by-17 inches
AO	841-by-1189mm
A1	594-by-841mm
A2	420-by-594mm
A3	297-by-420mm
A4	210-by-297mm
A5	148-by-210mm
ВО	1029-by-1456mm
B1	728-by-1028mm
B2	514-by-728mm

Property Value	Size (Width-by-Height)
B3	364-by-514mm
B4	257-by-364mm
B5	182-by-257mm
arch-A	9-by-12 inches
arch-B	12-by-18 inches
arch-C	18-by-24 inches
arch-D	24-by-36 inches
arch-E	36-by-48 inches
Α	8.5-by-11 inches
В	11-by-17 inches
C	17-by-22 inches
D	22-by-34 inches
E	34-by-43 inches

Printing Tips

This section includes information about specific printing issues.

Figures with Resize Functions

The print command produces a warning when you print a figure having a callback routine defined for the figure ResizeFcn. To avoid the warning, set the figure PaperPositionMode property to auto or select **Match Figure Screen Size** in the **File->Page Setup...** dialog box.

Troubleshooting MS-Windows Printing

If you encounter problems such as segmentation violations, general protection faults, application errors, or the output does not appear as you expect when using MS-Windows printer drivers, try the following:

- If your printer is PostScript compatible, print with one of the MATLAB built-in PostScript drivers. There are various PostScript device options that you can use with the print command: they all start with –dps.
- The behavior you are experiencing may occur only with certain versions of the print driver. Contact the print driver vendor for information on how to obtain and install a different driver.
- Try printing with one of the MATLAB built-in Ghostscript devices. These devices use Ghostscript to convert PostScript files into other formats, such as HP LaserJet, PCX, Canon BubbleJet, and so on.
- Copy the figure as a Windows Enhanced Metafile using the **Edit**-->**Copy Figure** menu item on the figure window menu or the print –dmet a option at the command line. You can then import the file into another application for printing.

You can set copy options in the figure's **File-->Preferences...-->Copying Options** dialog box. The Windows Enhanced Metafile clipboard format produces a better quality image than Windows Bitmap.

Printing MATLAB GUIs

You can generally obtain better results when printing a figure window that contains MATLAB ui control s by setting these key properties:

• Set the figure PaperPositionMode property to auto. This ensures the printed version is the same size as the onscreen version. With PaperPositionMode set to auto MATLAB does not resize the figure to fit the current value of the PaperPosition. This is particularly important if you have specified a figure ResizeFcn because if MATLAB resizes the figure during the print operation, the ResizeFcn is automatically called.

To set PaperPositionMode on the current figure, use the command:

```
set(gcf, 'PaperPositionMode', 'auto')
```

• Set the figure InvertHardcopy property to off. By default, MATLAB changes the figure background color of printed output to white, but does not change the color of uicontrols. If you have set the background color to, for example, match the gray of the GUI devices, you must set InvertHardcopy to off to preserve the color scheme.

To set InvertHardcopy on the current figure, use the command: set(gcf, 'InvertHardcopy', 'off')

- Use a color device if you want lines and text that are in color on the screen to be written to the output file as colored objects. Black and white devices convert colored lines and text to black or white to provide the best contrast with the background and to avoid dithering.
- Use the print command's -loose option to prevent MATLAB from using a bounding box that is tightly wrapped around objects contained in the figure. This is important if you have intentionally used space between uicontrols or axes and the edge of the figure and you want to maintain this appearance in the printed output.

Notes on Printing Interpolated Shading with PostScript Drivers MATLAB can print surface objects (such as graphs created with surf or mesh) using interpolated colors. However, only patch objects that are composed of triangular faces can be printed using interpolated shading.

Printed output is always interpolated in RGB space, not in the colormap colors. This means, if you are using indexed color and interpolated face coloring, the printed output can look different from what is displayed on screen.

PostScript files generated for interpolated shading contain the color information of the graphics object's vertices and require the printer to perform the interpolation calculations. This can take an excessive amount of time and in some cases, printers may actually "time-out" before finishing the print job. One solution to this problem is to interpolate the data and generate a greater number of faces, which can then be flat shaded.

To ensure that the printed output matches what you see on the screen, print using the - zbuffer option. To obtain higher resolution (for example, to make text look better), use the -r option to increase the resolution. There is, however, a trade-off between the resolution and the size of the created PostScript file, which can be quite large at higher resolutions. The default resolution of 150 dpi generally produces good results. You can reduce the size of the output file by making the figure smaller before printing it and setting the figure PaperPosi t i onMode to auto, or by just setting the PaperPosi t i on property to a smaller size.

print, printopt

Note that in some UNIX environments, the default l pr command cannot print files larger than 1 Mbyte unless you use the –s option, which MATLAB does by default. See the l pr man page for more information.

Examples

Specifying the Figure to Print

You can print a noncurrent figure by specifying the figure's handle. If a figure has the title "Figure No. 2", its handle is 2. The syntax is,

```
print - f handl e
```

This example prints the figure whose handle is 2, regardless of which figure is the current figure.

print -f2

Note Note that you must use the -f option if the figure's handle is hidden (i.e., its Handl eVi si bi l i ty property is set to off).

This example saves the figure with the handle - f2 to a PostScript file named Fi gure2, which can be printed later.

```
print -f2 -dps 'Figure2.ps'
```

If the figure uses noninteger handles, use the figure command to get its value, and then pass it in as the first argument.

```
h = figure('IntegerHandle','off')
print h -depson
```

You can also pass a figure handle as a variable to the function form of print. For example,

```
h = figure; plot(1:4,5:8)
print(h)
```

This example uses the function form of print to enable a filename to be passed in as a variable.

```
filename = 'mydata';
```

print('-f3', '-dpsc', filename);

(Because a filename is specified, the figure will be printed to a file.)

Specifying the Model to Print

To print a noncurrent Simulink model, use the -s option with the title of the window. For example, this command prints the Simulink window titled f14.

```
print -sf14
```

If the window title includes any spaces, you must call the function form rather than the command form of print. For example, this command saves a Simulink window title Thruster Control.

```
print('-sThruster Control')
```

To print the current system use:

print -s

For information about issues specific to printing Simulink windows, see the Simulink documentation.

This example prints a surface plot with interpolated shading. Setting the current figure's (gcf) PaperPosi ti onMode to auto enables you to resize the figure window and print it at the size you see on the screen. See Options and the previous section for information on the -zbuffer and -r200 options.

```
surf(peaks)
shading interp
set(gcf, 'PaperPositionMode', 'auto')
print -dpsc2 -zbuffer -r200
```

Batch Processing

You can use the function form of print to pass variables containing file names. For example, this for loop creates a series of graphs and prints each one with a different file name.

```
for k=1:length(fnames)
    surf(Z(:,:,k))
    print('-dtiff','-r200',fnames(k))
end
```

Tiff Preview

The command:

print -depsc -tiff -r300 picture1

saves the current figure at 300 dpi, in a color Encapsulated PostScript file named pi cture1. eps. The - ti ff option creates a 72 dpi TIFF preview, which many word processor applications can display on screen after you import the EPS file. This enables you to view the picture on screen within your word processor and print the document to a PostScript printer using a resolution of 300 dpi.

See Also orient, figure

Purpose	Display print dialog box
Syntax	printdlg printdlg(fig) printdlg('-crossplatform', fig) printdlg('-setup', fig)
Description	<pre>printdl g prints the current figure. printdl g(fig) creates a dialog box from which you can print the figure window identified by the handle fig. Note that uimenus do not print. printdl g(' - crosspl atform', fig) displays the standard cross-platform MATLAB printing dialog rather than the built-in printing dialog box for Microsoft Windows computers. Insert this option before the fig argument. printdl g(' - setup', fig) forces the printing dialog to appear in a setup mode. Here one can set the default printing options without actually printing.</pre>

printpreview

Purpose	Preview figure to be printed	
Syntax	pri ntprevi ew pri ntprevi ew(f)	
Description	 pri ntprevi ew displays a dialog box showing the figure in the currently active figure window as it will be printed. The figure is displayed with a 1/4 size thumbnail or full size image. pri ntprevi ew(f) displays a dialog box showing the figure having the handle f as it will be printed. You can select any of the following options from the Print Preview dialog box. 	
	Option Button	Description
	Print	Close Print Preview and open the Print dialog
	Page Setup	Open the Page Setup dialog
	Zoom In	Display a full size image of the page
	Zoom Out	Display a 1/4 scaled image of the page

Close the **Print Preview** dialog

See Also printdlg, pagesetupdlg

Close

prod

Purpose	Product of array elements
Syntax	B = prod(A) B = prod(A, dim)
Description	B = prod(A) returns the products along different dimensions of an array.
	If A is a vector, prod(A) returns the product of the elements.
	If A is a matrix, prod(A) treats the columns of A as vectors, returning a row vector of the products of each column.
	If A is a multidimensional array, prod(A) treats the values along the first non-singleton dimension as vectors, returning an array of row vectors.
	B = prod(A, dim) takes the products along the dimension of A specified by scalar dim.
Examples	The magic square of order 3 is
	M = magic(3)
	M =
	8 1 6
	3 5 7
	4 9 2
	The product of the elements in each column is
	<pre>prod(M) =</pre>
	96 45 84
	The product of the elements in each row can be obtained by:
	prod(M, 2) =
	48
	105
	72
See Also	cumprod, diff, sum

profile

Purpose	Tool for optimizing and debugging M-file code
Graphical Interface	As an alternative to the profile function, select View -> Profiler from the desktop.
Syntax	<pre>profile viewer profile on profile on - detail level profile on - history profile off profile resume profile clear profile clear profile report profile report basename profile plot s = profile('status') stats = profile('info')</pre>
Description	The profile function helps you debug and optimize M-files by tracking their execution time. For each function in the M-file, profile records information about execution time, number of calls, parent functions, child functions, code line hit count, and code line execution time. Some people use profile simply to see the child functions; see also depfun for that purpose. The Profiler user interface, opened with profile viewer, provides information gathered using the profile function, but presents the information in a different format from profile report.
	profile viewer opens the Profiler graphical interface, a tool for assessing M-file performance to help you identify potential performance improvements. It is based on the results returned by the profile function, but presents the information a different format than the profile report. The report function provides some options not available with the Profiler, including saving the reports to a file.
	$profile\ {\bf on}\ starts\ profile,\ clearing\ previously\ recorded\ profile\ statistics.$

Value for level	Functions profile Gathers Information About
mmex	M-functions, M-subfunctions, and MEX-functions; mmex is the default value
bui l ti n	Same functions as for mmex plus built-in functions such as eig
operator	Same functions as for builtin plus built-in operators such as +

profile **on** - **detail** *level* starts profile for the set of functions specified by *level*, clearing previously recorded profile statistics.

profile **on** - **history** starts profile, clearing previously recorded profile statistics, and recording the exact sequence of function calls. The profile function records up to 10,000 function entry and exit events. For more than 10,000 events, profile continues to record other profile statistics, but not the sequence of calls.

profile off suspends profile.

profile **resume** restarts profile without clearing previously recorded statistics.

profile clear clears the statistics recorded by profile.

profile **report** suspends profile, generates a profile report in HTML format, and displays the report in your system's default Web browser. This report contains some different information than what is available in the Profiler reports.

profile **report** basename suspends profile, generates a profile report in HTML format, saves the report in the file basename in the current directory, and displays the report in your system's default Web browser. Because the report consists of several files, do not provide an extension for basename.

profile **plot** suspends profile and displays in a figure window a bar graph of the functions using the most execution time.

s = profile('status') displays a structure containing the current profile status. The structure's fields are

Field	Values
ProfilerStatus	'on' or 'off'
DetailLevel	'mmex','builtin', or 'operator'
HistoryTracking	'on' or 'off'

stats = profile('info') suspends profile and displays a structure containing profile results. Use this function to access the data generated by profile. The structure's fields are

	Field	Description
	Functi onTabl e	Array containing list of all functions called
	Functi onHi story	Array containing function call history
	ClockPrecision	Precision of profile's time measurement
Remarks	about the results and he	profile report and profile plot, as well as to learn more ow to use profiling, see "Measuring Performance" and n MATLAB Programming documentation.
Examples	Follow these steps to ru	n profile and create a profile report.
	<pre>1 Run profile for code that computes the Lotka-Volterra predator-prey population model. profile on - detail builtin - history [t, y] = ode23('lotka', [0 2], [20; 20]); profile report</pre>	
	information for all M	pears in your system's default Web browser, providing -functions, M-subfunctions, MEX-functions, and he report includes the function call history.

	2 Generate the profile plot. profile plot
	The profile plot appears in a figure window.3 Because the report and plot features suspend profile, resume its operation without clearing the statistics already gathered.
	profile resume
	The $\operatorname{profile}$ function continues gathering statistics when you execute the next M-file.
See Also	depdir, depfun, profreport, tic
	See "Measuring Performance", "The Profiler", and "The profile Function" in the MATLAB Programming documentation.

profreport

Purpose	Generate profile report
Syntax	<pre>profreport profreport(basename) profreport(stats) profreport(basename, stats)</pre>
Description	profreport suspends the profile function, generates a profile report in HTML format using the current profile results, and displays the report in a Web browser. This presents the information in a different format from the Profiler reports.
	profreport (basename) suspends profile, generates a profile report in HTML format using the current profile results, saves the report using the basename you supply, and displays the report in a Web browser. Because the report consists of several files, do not provide an extension for basename.
	<pre>profreport(stats) suspends profile, generates a profile report in HTML format using the info results from profile, and displays the report in a Web browser. Here, stats is the profile information structure returned by stats = profile('info').</pre>
	profreport(basename, stats) suspends profile, generates a profile report in HTML format using the stats result from profile, saves the report using the basename you supply, and displays the report in a Web browser. Here, stats is the profile information structure returned by stats = $profile('info')$. Because the report consists of several files, do not provide an extension for basename.
Examples	Run $\operatorname{profile}$ and view the structure containing profile results.
	<pre>1 Run profile for code that computes the Lotka-Volterra predator-prey population model. profile on -detail builtin -history [t,y] = ode23('lotka', [0 2], [20; 20]);</pre>

2 View the structure containing the profile results.

stats = profile('info')

MATLAB returns

```
stats =
FunctionTable: [42x1 struct]
FunctionHistory: [2x830 double]
ClockPrecision: 0.0100
Name: 'MATLAB'
```

3 View the contents of the second element in the Functi onTable structure. stats. Functi onTable(2)

MATLAB returns

ans =

FunctionName:	'horzcat'
FileName:	
Type:	'Builtin-function
NumCalls:	43
Total Time:	0
Total Recursi veTime:	0
Children:	[0x1 struct]
Parents:	[2x1 struct]
ExecutedLi nes:	[0x3 double]

4 Display the profile report from the structure.

profreport(stats)

MATLAB displays the profile report in a Web browser.

See Also profile

"Measuring Performance" and "The profile Function" in MATLAB Programming documentation

propedit

Purpose	Starts the Property Editor
Syntax	propedi t propedi t (Handl eLi st)
Description	propedit starts the Property Editor, a graphical user interface to the properties of Handle Graphics objects. If you call it without any input arguments, the Property Editor displays the properties of the current figure, if there are more than one figure displayed, or the root object, if there is no currently active figure.
	propedit(HandleList) edits the properties for the object (or objects) in HandleList. Note Starting the Property Editor enables plot editing mode for the figure.

Remarks Property Editor Graphical User Interface Components

Use these buttons to move back and forth among	the graphics objects you have edited.
Use the navigation bar to select	Property Editor - Line
the object you want to edit.	– Edit Properties for: line: 🗾 📢 🔪
Click on a tab to view a	Data Style Info
3.00p 01 p. 0p. 1100	Line Style: Solid line (-)
	Line width: 0.5
Click here to view a list of	Line color: Black Custom color
	Marker Properties Style: Circle (o) Size: 6.0
	Edge color: Inherited (auto)
Click Apply to apply your changes without dismissing the Property Editor.	Face color: Red Custom color
Click Cancel to dismiss the Property Editor without applying your changes.	Example
Click OK to apply your changes and dismiss the Property Editor.	
Check this box to see the effect of your	
thanges as you make mem.	OK Cancel Apply Click Help to get info rmatio n
	Immediate apply about particular properties.

See Also

pl ot edi t

propedit (COM)

Purpose	Request the control to display its built-in property page
Syntax	propedit(h)
Arguments	h Handle for a MATLAB COM control object.
Description	Request the control to display its built-in property page. Note that some controls do not have a built-in property page. For those objects, this command will fail.
Examples	Create a Microsoft Calendar control and display its property page: cal = actxcontrol('mscal.calendar', [0 0 500 500]); propedit(cal)
See Also	inspect, get

Purpose	Psi (polygamma) function
Syntax	Y = psi(X) Y = psi(k, X) Y = psi(k0: k1, X)
Description	$Y = psi(X)$ evaluates the ψ function for each element of array X. X must be real and nonnegative. The ψ function, also known as the digamma function, is the logarithmic derivative of the gamma function
	$\psi(x) = \text{digamma}(x)$ $= \frac{d(\log(\Gamma(x)))}{dx}$ $= \frac{d(\Gamma(x))/dx}{\Gamma(x)}$ Y = psi (k, X) evaluates the kth derivative of ψ at the elements of X. psi (0, X) is the digamma function, psi (1, X) is the trigamma function, psi (2, X) is the tetragamma function, etc. Y = psi (k0: k1, X) evaluates derivatives of order k0 through k1 at X. Y(k, j) is
Examples	<pre>the (k-1+k0) th derivative of ψ, evaluated at X(j). Example 1. Use the psi function to calculate Euler's constant, γ. format long - psi (1) ans = 0. 57721566490153 - psi (0, 1) ans = 0. 57721566490153</pre>
	Example 2. The trigamma function of 2, psi (1, 2), is the same as $(\pi^2/6) - 1$. format long psi (1, 2) ans = 0. 64493406684823

pi ^2/6 - 1 ans = 0. 64493406684823

Example 3. This code produces the first page of Table 6.1 in Abramowitz and Stegun [].

```
x = (1:.005:1.250)';
[x gamma(x) gammaln(x) psi(0:1,x)' x-1]
```

Example 4. This code produces a portion of Table 6.2 in [].

psi (2:3, 1:.01:2)'

See Also gamma, gammai nc, gammal n

References Abramowitz, M. and I. A. Stegun, *Handbook of Mathematical Functions*, Dover Publications, 1965, Sections 6.3 and 6.4.

Purpose	Display current directory
Graphical Interface	As an alternative to the pwd function, use the Current Directory field in the MATLAB desktop toolbar.
Syntax	pwd s = pwd
Description	pwd displays the current working directory.
	s = pwd returns the current directory to the variable s.
See Also	cd, dir, path, what

Purpose	Quasi-Minimal Residual method
Syntax	<pre>x = qmr(A, b) qmr(A, b, tol) qmr(A, b, tol, maxit) qmr(A, b, tol, maxit, M) qmr(A, b, tol, maxit, M1, M2) qmr(A, b, tol, maxit, M1, M2, x0) qmr(afun, b, tol, maxit, m1fun, m2fun, x0, p1, p2,) [x, flag] = qmr(A, b,) [x, flag, relres] = qmr(A, b,) [x, flag, relres, iter] = qmr(A, b,) [x, flag, relres, iter, resvec] = qmr(A, b,)</pre>
Description	$x = qmr(A, b)$ attempts to solve the system of linear equations $A^*x=b$ for x. The n-by-n coefficient matrix A must be square and should be large and sparse. The column vector b must have length n. A can be a function afun such that afun(x) returns A^*x and afun(x, 'transp') returns A' *x. If qmr converges, a message to that effect is displayed. If qmr fails to converge after the maximum number of iterations or halts for any reason, a warning message is printed displaying the relative residual norm(b- A^*x) /norm(b) and the iteration number at which the method stopped or failed. qmr(A, b, tol) specifies the tolerance of the method. If tol is [], then qmr uses the default, 1e-6.
	qmr (A, b, tol, maxit) specifies the maximum number of iterations. If maxit is [], then qmr uses the default, min(n, 20). qmr (A, b, tol, maxit, M) and qmr (A, b, tol, maxit, M1, M2) use preconditioners Mor M = M1*M2 and effectively solve the system inv(M) *A*x = inv(M) *b for x. If Mis [] then qmr applies no preconditioner. Mcan be a function mf un such that mf un(x) returns M\x and mf un(x, 'transp') returns M' \x. qmr (A, b, tol, maxit, M1, M2, x0) specifies the initial guess. If x0 is [], then qmr uses the default, an all zero vector.

qmr (afun, b, tol, maxit, m1fun, m2fun, x0, p1, p2, ...) passes parameters p1, p2, ... to functions afun(x, p1, p2, ...) and afun(x, p1, p2, ..., 'transp') and similarly to the preconditioner functions m1fun and m2fun.

[x, flag] = qmr(A, b, ...) also returns a convergence flag.

Flag	Convergence
0	\ensuremath{qmr} converged to the desired tolerance tol within \ensuremath{maxit} iterations.
1	qmr iterated maxit times but did not converge.
2	Preconditioner M was ill-conditioned.
3	The method stagnated. (Two consecutive iterates were the same.)
4	One of the scalar quantities calculated during qmr became too small or too large to continue computing.

Whenever fl ag is not 0, the solution x returned is that with minimal norm residual computed over all the iterations. No messages are displayed if the fl ag output is specified.

```
[x, flag, relres] = qmr(A, b, ...) also returns the relative residual norm(b-A*x)/norm(b). If flag is 0, relres <= tol.
```

```
[x, flag, relres, iter] = qmr(A, b, ...) also returns the iteration number at which x was computed, where 0 <= iter <= maxit.
```

[x, flag, relres, iter, resvec] = qmr(A, b, ...) also returns a vector of the residual norms at each iteration, including norm(b-A*x0).

Examples Example 1.

n = 100; on = ones(n, 1); A = spdiags([-2*on 4*on - on], -1:1, n, n); b = sum(A, 2);

```
tol = 1e-8; maxit = 15;
M1 = spdiags([on/(-2) on], -1:0, n, n);
M2 = spdiags([4*on -on], 0:1, n, n);
x = qmr(A, b, tol, maxit, M1, M2, []);
```

Alternatively, use this matrix-vector product function

```
function y = afun(x, n, transp_fl ag)
if (nargin > 2) & strcmp(transp_fl ag, 'transp')
    y = 4 * x;
    y(1:n-1) = y(1:n-1) - 2 * x(2:n);
    y(2:n) = y(2:n) - x(1:n-1);
else
    y = 4 * x;
    y(2:n) = y(2:n) - 2 * x(1:n-1);
    y(1:n-1) = y(1:n-1) - x(2:n);
end
```

as input to qmr

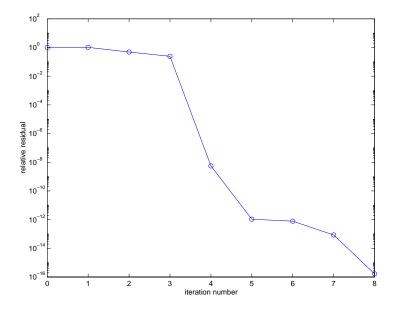
x1 = qmr(@afun, b, tol, maxit, M1, M2, [], n);

Example 2.

load west0479; A = west0479; b = sum(A, 2); [x, flag] = qmr(A, b)

fl ag is 1 because qmr does not converge to the default tolerance 1e-6 within the default 20 iterations.

```
[L1, U1] = luinc(A, 1e-5);
[x1, flag1] = qmr(A, b, 1e-6, 20, L1, U1)
```


fl ag1 is 2 because the upper triangular U1 has a zero on its diagonal, and qmr fails in the first iteration when it tries to solve a system such as U1*y = r for y using backslash.

```
[L2, U2] = luinc(A, 1e-6);
[x2, flag2, relres2, iter2, resvec2] = qmr(A, b, 1e-15, 10, L2, U2)
```

fl ag2 is 0 because qmr converges to the tolerance of 1. 6571e-016 (the value of rel res2) at the eighth iteration (the value of i ter2) when preconditioned by

the incomplete LU factorization with a drop tolerance of 1e-6. resvec2(1) = norm(b) and resvec2(9) = norm(b-A*x2). You can follow the progress of qmr by plotting the relative residuals at each iteration starting from the initial estimate (iterate number 0).

```
semilogy(0:iter2,resvec2/norm(b),'-o')
xlabel('iteration number')
ylabel('relative residual')
```


 See Also
 bi cg, bi cgstab, cgs, gmres, l sqr, l ui nc, mi nres, pcg, symml q

 @ (function handle), \ (backslash)

References[1] Barrett, R., M. Berry, T. F. Chan, et al., *Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods*, SIAM, Philadelphia, 1994.

[2] Freund, Roland W. and Nöel M. Nachtigal, "QMR: A quasi-minimal residual method for non-Hermitian linear systems", *SIAM Journal: Numer. Math.* 60, 1991, pp. 315-339.

qr

Purpose	Orthogonal-triangular decomposition
Syntax	[Q, R] = qr(A)(full and sparse matrices) $[Q, R] = qr(A, 0)$ (full and sparse matrices) $[Q, R, E] = qr(A)$ (full matrices) $[Q, R, E] = qr(A, 0)$ (full matrices) $X = qr(A)$ (full matrices) $R = qr(A)$ (sparse matrices) $[C, R] = qr(A, B)$ (sparse matrices) $R = qr(A, 0)$ (sparse matrices) $[C, R] = qr(A, B, 0)$ (sparse matrices) $[C, R] = qr(A, B, 0)$ (sparse matrices)
Description	The qr function performs the orthogonal-triangular decomposition of a matrix. This factorization is useful for both square and rectangular matrices. It expresses the matrix as the product of a real orthonormal or complex unitary matrix and an upper triangular matrix. $[Q, R] = qr(A) \text{ produces an upper triangular matrix R of the same dimensionas A and a unitary matrix Q so that A = Q*R. For sparse matrices, Q is oftennearly full. If [m n] = si ze(A), then Q is m-by-m and R is m-by-n.[Q, R] = qr(A, 0) \text{ produces an "economy-size" decomposition. If}[m n] = si ze(A), and m > n, then qr computes only the first n columns of of Qand R is n-by-n. If m <= n, it is the same as [Q, R] = qr(A).[Q, R, E] = qr(A) for full matrix A, produces a permutation matrix E, an uppertriangular matrix R with decreasing diagonal elements, and a unitary matrixQ so that A*E = Q*R. The column permutation E is chosen so that abs(di ag(R))$
	is decreasing. [Q, R, E] = qr(A, 0) for full matrix A, produces an "economy-size" decomposition in which E is a permutation vector, so that A(:, E) = Q*R. The column permutation E is chosen so that abs(di ag(R)) is decreasing. X = qr(A) for full matrix A, returns the output of the LAPACK subroutine DGEQRF or ZGEQRF. triu(qr(A)) is R.

R = qr(A) for sparse matrix A, produces only an upper triangular matrix, R. The matrix R provides a Cholesky factorization for the matrix associated with the normal equations,

 $\mathbf{R'} * \mathbf{R} = \mathbf{A'} * \mathbf{A}$

This approach avoids the loss of numerical information inherent in the computation of A' *A. It may be preferred to [Q, R] = qr(A) since Q is always nearly full.

[C, R] = qr(A, B) for sparse matrix A, applies the orthogonal transformations to B, producing C = Q' *B without computing Q. B and A must have the same number of rows.

R = qr(A, 0) and [C, R] = qr(A, B, 0) for sparse matrix A, produce "economy-size" results.

For sparse matrices, the Q-less QR factorization allows the solution of sparse least squares problems

```
minimize ||Ax - b||
```

with two steps

[C, R] = qr(A, b)x = R\c

If A is sparse but not square, MATLAB uses the two steps above for the linear equation solving backslash operator, i.e., $x = A \setminus b$.

Examples

Example 1. Start with

A =	[1	2	3
	4	5	6
	7	8	9
	10	11	12]

This is a rank-deficient matrix; the middle column is the average of the other two columns. The rank deficiency is revealed by the factorization:

$$[Q, R] = qr(A)$$

 $Q =$

- 0. 0776	- 0. 8331	0. 5444	0.0605
- 0. 3105	- 0. 4512	- 0. 7709	0. 3251
- 0. 5433	- 0. 0694	- 0. 0913	- 0. 8317
- 0. 7762	0.3124	0.3178	0.4461
R =			
- 12. 8841	- 14. 5916	- 16. 2992	
0	- 1. 0413	- 2. 0826	
0	0	0.0000	
0	0	0	

The triangular structure of R gives it zeros below the diagonal; the zero on the diagonal in R(3, 3) implies that R, and consequently A, does not have full rank.

Example 2. This examples uses matrix A from the first example. The QR factorization is used to solve linear systems with more equations than unknowns. For example, let

b = [1; 3; 5; 7]

The linear system Ax = b represents four equations in only three unknowns. The best solution in a least squares sense is computed by

 $\mathbf{x} = \mathbf{A} \mathbf{b}$

which produces

Warning: Rank deficient, rank = 2, tol = 1.4594E-014 x = 0.5000 0 0.1667

The quantity tol is a tolerance used to decide if a diagonal element of R is negligible. If [Q, R, E] = qr(A), then

tol = $\max(size(A)) * eps*abs(R(1, 1))$

The solution x was computed using the factorization and the two steps

y = Q' *b; $x = R \setminus y$

qr

The computed solution can be checked by forming Ax. This equals b to within roundoff error, which indicates that even though the simultaneous equations Ax = b are overdetermined and rank deficient, they happen to be consistent. There are infinitely many solution vectors x; the QR factorization has found just one of them.

Algorithm

The qr function uses LAPACK routines to compute the QR decomposition:

Syntax	Real	Complex
R = qr(A) R = qr(A, 0)	DGEQRF	ZGEQRF
[Q, R] = qr(A) [Q, R] = qr(A, 0)	DGEQRF, DORGQR	ZGEQRF, ZUNGQR
[Q, R, e] = qr(A) [Q, R, e] = qr(A, 0)	DGEQP3, DORGQR	ZGEQPF, ZUNGQR

See Also lu, null, orth, qrdelete, qrinsert, qrupdate

The arithmetic operators \setminus and /

References[1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
LAPACK User's Guide
(http://www.netlib.org/lapack/lug/lapack_lug.html), Third Edition,
SIAM, Philadelphia, 1999.

qrdelete

Purpose	Delete column or row from QR factorization
Syntax	<pre>[Q1, R1] = qrdelete(Q, R, j) [Q1, R1] = qrdelete(Q, R, j, 'col') [Q1, R1] = qrdelete(Q, R, j, 'row')</pre>
Description	[Q1, R1] = qrdel ete(Q, R, j) returns the QR factorization of the matrix A1, where A1 is A with the column A(:, j) removed and $[Q, R] = qr(A)$ is the QR factorization of A.
	[Q1, R1] = qrdel ete(Q, R, j, ' col') is the same as qrdel ete(Q, R, j).
	[Q1, R1] = qrdel ete(Q, R, j, 'row') returns the QR factorization of the matrix A1, where A1 is A with the row A(j, :) removed and $[Q, R] = qr(A)$ is the QR factorization of A.
Examples	<pre>A = magic(5); [Q, R] = qr(A); j = 3; [Q1, R1] = qrdelete(Q, R, j, 'row'); Q1 =</pre>
	0. 5274 - 0. 5197 - 0. 6697 - 0. 0578
	0. 7135 0. 6911 0. 0158 0. 1142 0. 3102 - 0. 1982 0. 4675 - 0. 8037
	0. 3413 - 0. 4616 0. 5768 0. 5811
	R1 =
	$32.\ 2335$ 26. 0908 19. 9482 21. 4063 23. 3297
	0 - 19. 7045 - 10. 9891 0. 4318 - 1. 4873
	0 0 22.7444 5.8357 - 3.1977
	0 0 0 -14. 5784 3. 7796
	returns a valid QR factorization, although possibly different from
	A2 = A;

A2 = A; A2(j, :) = [];[Q2, R2] = qr(A2)

	Q2 =					
	- 0. 5274	0. 5197	0.6697	- 0. 0578		
	- 0. 7135	- 0. 6911	- 0. 0158	0. 1142		
	- 0. 3102	0. 1982	- 0. 4675	- 0. 8037		
	- 0. 3413	0. 4616	- 0. 5768	0. 5811		
	R2 =					
	- 32. 2335	- 26. 0908	- 19. 9482	- 21. 4063	- 23. 3297	
	0	19. 7045	10. 9891	- 0. 4318	1.4873	
	0	0	- 22. 7444	- 5. 8357	3. 1977	
	0	0	0	- 14. 5784	3.7796	
Algorithm	The qrdel ete fi appropriate elei				tions to zero ou	t the

See Also planerot, qr, qrinsert

qrinsert

Purpose	Insert column or	row into Q	R factorizat	ion		
Syntax	[Q1, R1] = qrin [Q1, R1] = qrin [Q1, R1] = qrin	sert(Q,R,j	, x, ' col ')			
Description	[Q1, R1] = qrin where A1 is A = columns and j =	Q*R with th	e column x	inserted bef	ore A(:,j).	If A has n
	[Q1, R1] = qrin	sert(Q,R,j	, x, ' col ') i	is the same	as qri nsert	t (Q, R, j, x).
	[Q1, R1] = qrin matrix A1, where	-				
Examples	A = magic(5) [Q, R] = qr(A j = 3; x = 1:5; [Q1, R1] = qr	A);	R,j,x,'row'	')		
	Q1 =					
	0. 5231	0. 5039	- 0. 6750	0. 1205	0.0411	0. 0225
	0. 7078	- 0. 6966	0.0190	- 0. 0788	0. 0833	- 0. 0150
	0. 0308	0. 0592	0.0656	0.1169	0. 1527	- 0. 9769
	0. 1231	0. 1363	0.3542	0. 6222	0. 6398	0. 2104
	0. 3077	0. 1902	0.4100	0. 4161	-0.7264	- 0. 0150
	0. 3385	0. 4500	0. 4961	- 0. 6366	0. 1761	0. 0225
	R1 =					
	32. 4962	26. 6801	21. 4795	23. 8182	26.0031	
	0	19. 9292	12.4403	2. 1340	4. 3271	
	0	0	24.4514	11. 8132	3. 9931	
	0	0	0	20. 2382	10. 3392	
	0	0	0	0	16. 1948	
	0	0	0	0	0	

returns a valid QR factorization, although possibly different from

	A2 = [A(1:j)] [Q2, R2] = q		A(j : end, :)];		
	Q2 =					
	- 0. 5231	0. 5039	0.6750	-0.1205	0.0411	0. 0225
	- 0. 7078	- 0. 6966	- 0. 0190	0. 0788	0. 0833	- 0. 0150
	- 0. 0308	0. 0592	- 0. 0656	-0.1169	0. 1527	- 0. 9769
	- 0. 1231	0. 1363	- 0. 3542	- 0. 6222	0. 6398	0. 2104
	- 0. 3077	0. 1902	-0.4100	-0.4161	- 0. 7264	- 0. 0150
	- 0. 3385	0.4500	-0.4961	0.6366	0.1761	0. 0225
	R2 =					
	- 32. 4962	- 26. 6801	- 21. 4795	- 23. 8182	- 26. 0031	
	0	19. 9292	12.4403	2.1340	4. 3271	
	0	0	- 24. 4514	- 11. 8132	- 3. 9931	
	0	0	0	- 20. 2382	- 10. 3392	
	0	0	0	0	16. 1948	
	0	0	0	0	0	
Algorithm	The qri nsert fu then uses a seri and below the d	es of Givens	s rotations to	o zero out th	0	

See Also planerot, qr, qrdel ete

qrupdate

Description	Rank 1 update to QR factorization
Syntax	[Q1, R1] = qrupdate(Q, R, u, v)
Description	$[Q1, R1] = qrupdate(Q, R, u, v)$ when $[Q, R] = qr(A)$ is the original QR factorization of A, returns the QR factorization of A + u^*v' , where u and v are column vectors of appropriate lengths.
Remarks	qrupdate works only for full matrices.
Examples	The matrix
	<pre>mu = sqrt(eps)</pre>
	mu =
	1. 4901e-08
	A = [ones(1, 4); mu*eye(4)];

is a well-known example in least squares that indicates the dangers of forming A' *A. Instead, we work with the QR factorization – orthonormal Q and upper triangular R.

[Q, R] = qr(A);

As we expect, R is upper triangular.

R =

- 1. 0000	- 1. 0000	- 1. 0000	- 1. 0000
0	0. 0000	0.0000	0. 0000
0	0	0.0000	0. 0000
0	0	0	0. 0000
0	0	0	0

In this case, the upper triangular entries of R, excluding the first row, are on the order of sqrt(eps).

Consider the update vectors

 $u = [-1 \ 0 \ 0 \ 0]'; v = ones(4, 1);$

Instead of computing the rather trivial QR factorization of this rank one update to A from scratch with

 $[QT, RT] = qr(A + u^*v')$ QT = 0 0 0 0 1 - 1 0 0 0 0 0 - 1 0 0 0 0 0 0 - 1 0 0 0 0 0 - 1 RT = 1.0e-007 * -0.1490 0 0 0 0 -0.1490 0 0 0 -0.1490 0 0 0 0 0 -0.1490 0 0 0 0 we may use qrupdate. [Q1, R1] = qrupdate(Q, R, u, v)Q1 = - 0. 0000 - 0. 0000 - 0. 0000 - 0. 0000 1.0000 1.0000 - 0. 0000 - 0. 0000 - 0. 0000 0.0000 - 0. 0000 0.0000 1.0000 0.0000 -0.0000 0.0000 0.0000 1.0000 - 0. 0000 0.0000 - 0. 0000 - 0. 0000 - 0. 0000 1.0000 0.0000 R1 = 1.0e-007 * 0.1490 0.0000 0.0000 0.0000 0 0.1490 0.0000 0.0000 0 0.0000 0 0.1490

qrupdate

	0 0		0 0	0 0	0. 1490 0	
	Note that both	factoriza	itions are co	rrect,	even though	they are different.
Algorithm	Computations N = max(m, n),	by Golub then con N ³) algori	o and van Lo nputing the ithm, while s	oan. q new Q	rupdate is u R factorizat	hird edition of <i>Matrix</i> aseful since, if we take ion from scratch is a existing factors in this
References	[1] Golub, Gen Edition, Johns					<i>mputations</i> , Third 1996
See Also	chol update, q	r				

Purpose	Numerically evaluate integral, adaptive Simpson quadrature
	Note The quad8 function, which implemented a higher order method, is obsolete. The quad1 function is its recommended replacement.
Syntax	<pre>q = quad(fun, a, b) q = quad(fun, a, b, tol) q = quad(fun, a, b, tol, trace) q = quad(fun, a, b, tol, trace, p1, p2,) [q, fcnt] = quadl(fun, a, b,)</pre>
Description	<i>Quadrature</i> is a numerical method used to find the area under the graph of a function, that is, to compute a definite integral.
	 q = ∫^b_a f(x) dx q = quad(fun, a, b) approximates the integral of function fun from a to b to within an error of 10⁻⁶ using recursive adaptive Simpson quadrature. fun accepts a vector x and returns a vector y, the function fun evaluated at each element of x. q = quad(fun, a, b, tol) uses an absolute error tolerance tol instead of the default which is 1. 0e- 6. Larger values of tol result in fewer function evaluations and faster computation, but less accurate results. In MATLAB version 5.3 and earlier, the quad function used a less reliable algorithm and a default relative tolerance of 1. 0e-3. q = quad(fun, a, b, tol, trace) with non-zero trace shows the values of [fcnt a b-a Q] during the recursion. q = quad(fun, a, b, tol, trace, p1, p2,) provides for additional arguments p1, p2, to be passed directly to function fun, fun(x, p1, p2,). Pass empty matrices for tol or trace to use the default values. [q, fcnt] = quad() returns the number of function evaluations.

quad, quad8

	The function quad1 may be more efficient with high accuracies and smooth integrands.
Examples	The function fun can be
	 An inline object F = inline('1./(x.^3-2*x-5)'); Q = quad(F, 0, 2);
	 A function handle Q = quad(@myfun, 0, 2);
	where myfun. m is an M-file.
	function $y = myfun(x)$ y = 1. /(x. ^3-2*x-5);
Algorithm	quad implements a low order method using an adaptive recursive Simpson's rule.
Diagnostics	quad may issue one of the following warnings:
Diagnostics	<pre>quad may issue one of the following warnings: ' Mi ni mum step size reached' indicates that the recursive interval subdivision has produced a subinterval whose length is on the order of roundoff error in the length of the original interval. A nonintegrable singularity is possible.</pre>
Diagnostics	'Mi ni mum step size reached' indicates that the recursive interval subdivision has produced a subinterval whose length is on the order of roundoff error in the length of the original interval. A nonintegrable singularity is
Diagnostics	 'Mi ni mum step si ze reached' indicates that the recursive interval subdivision has produced a subinterval whose length is on the order of roundoff error in the length of the original interval. A nonintegrable singularity is possible. 'Maxi mum function count exceeded' indicates that the integrand has been
Diagnostics See Also	 'Mi ni mum step si ze reached' indicates that the recursive interval subdivision has produced a subinterval whose length is on the order of roundoff error in the length of the original interval. A nonintegrable singularity is possible. 'Maxi mum functi on count exceeded' indicates that the integrand has been evaluated more than 10,000 times. A nonintegrable singularity is likely. 'Infi ni te or Not-a-Number functi on val ue encountered' indicates a floating point overflow or division by zero during the evaluation of the

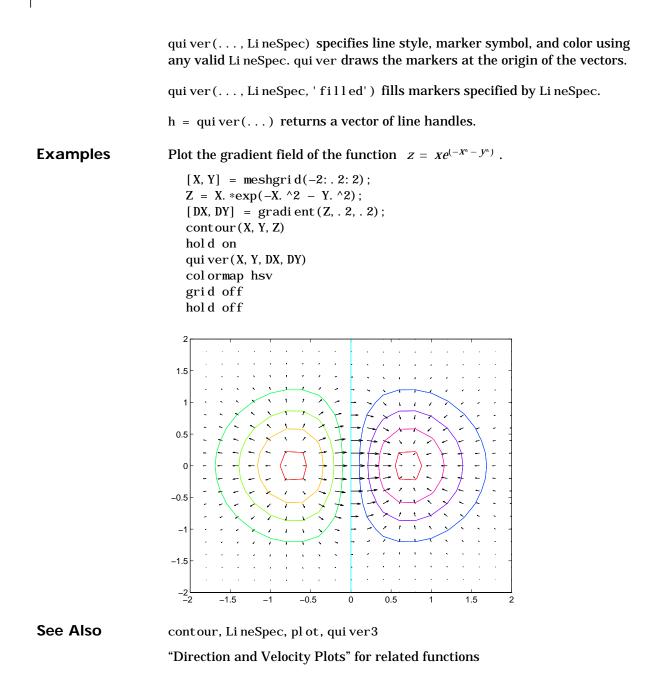
Purpose	Numerically evaluate integral, adaptive Lobatto quadrature		
Syntax	<pre>q = quadl (fun, a, b) q = quadl (fun, a, b, tol) q = quadl (fun, a, b, tol, trace) q = quadl (fun, a, b, tol, trace, p1, p2,) [q, fcnt] = quadl (fun, a, b,)</pre>		
Description	$q = quadl (fun, a, b)$ approximates the integral of function fun from a to b, to within an error of 10^{-6} using recursive adaptive Lobatto quadrature. fun accepts a vector x and returns a vector y, the function fun evaluated at each element of x.		
	q = quadl (fun, a, b, tol) uses an absolute error tolerance of tol instead of the default, which is 1. 0e-6. Larger values of tol result in fewer function evaluations and faster computation, but less accurate results.		
	quadl (fun, a, b, tol, trace) with non-zero trace shows the values of [fcnt a b-a q] during the recursion.		
	quadl (fun, a, b, tol, trace, p1, p2,) provides for additional arguments p1, p2, to be passed directly to function fun, $fun(x, p1, p2,)$. Pass empty matrices for tol or trace to use the default values.		
	[q, fcnt] = quadl() returns the number of function evaluations.		
	Use array operators . \ast , . / and . ^ in the definition of fun so that it can be evaluated with a vector argument.		
	The function quad may be more efficient with low accuracies or nonsmooth integrands.		
Examples	The function fun can be:		
-	 An inline object F = inline('1./(x.^3-2*x-5)'); Q = quadl (F, 0, 2); 		

	 A function handle Q = quadl (@myfun, 0, 2); 	
	where myfun. m is an M-file. function $y = myfun(x)$ $y = 1. /(x. ^3-2*x-5);$	
Algorithm	quad1 implements a high order method using an adaptive Gauss/Lobatto qudrature rule.	
Diagnostics	quadl may issue one of the following warnings:	
	' Mi ni mum step size reached' indicates that the recursive interval subdivision has produced a subinterval whose length is on the order of roundoff error in the length of the original interval. A nonintegrable singularity is possible.	
	'Maximum function count exceeded' indicates that the integrand has been evaluated more than 10,000 times. A nonintegrable singularity is likely.	
	'Infinite or Not-a-Number function value encountered' indicates a floating point overflow or division by zero during the evaluation of the integrand in the interior of the interval.	
See Also	dbl quad, i nl i ne, quad, tri pl equad, @ (function handle)	
References	[1] Gander, W. and W. Gautschi, "Adaptive Quadrature – Revisited", BIT, Vol. 40, 2000, pp. 84-101. This document is also available at http://www.inf.ethz.ch/personal/gander.	

Purpose	Create and display question dialog box		
Syntax	<pre>button = questdlg('qstring') button = questdlg('qstring','title') button = questdlg('qstring','title','default') button = questdlg('qstring','title','str1','str2','default') button = questdlg('qstring','title','str1','str2','str3','default')</pre>		
Description	button = questdl g('qstring') displays a modal dialog presenting the question 'qstring'. The dialog has three default buttons, Yes , No , and Cancel . If the user presses one of these three buttons, button is set to the name of the button pressed. If the user presses the close button on the dialog, button is set to the empty string. If the user presses the Return key, button is set to 'Yes'. 'qstring' is a cell array or a string that automatically wraps to fit within the dialog box.		
	button = $questdlg('qstring', 'title')$ displays a question dialog with ' $title$ ' displayed in the dialog's title bar.		
	button = questdlg('qstring', 'title', 'default') specifies which push button is the default in the event that the Return key is pressed. ' $default$ ' must be 'Yes', 'No', or 'Cancel'.		
	button = questdlg('qstring', 'title', 'str1', 'str2', 'default') creates a question dialog box with two push buttons labeled 'str1' and 'str2'.' default' specifies the default button selection and must be 'str1' or 'str2'.		
	<pre>button = questdlg('qstring', 'title', 'str1', 'str2', 'str3', 'default') creates a question dialog box with three push buttons labeled 'str1', 'str2', and 'str3'.'default' specifies the default button selection and must be 'str1', 'str2', or 'str3'.</pre>		
	In all cases where 'default' is specified, if' default' is not set to one of the button names, pressing the Return key displays a warning and the dialog remains open.		

questdlg

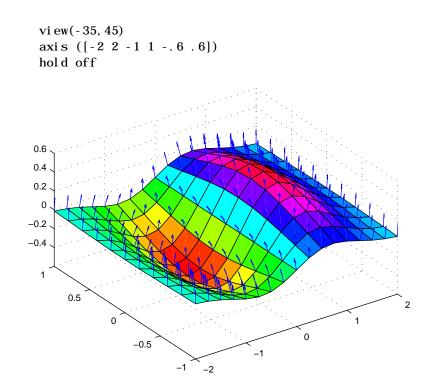
Example	Create a question dialog asking the user whether to continue a hypothetical operation:		
	<pre>button = questdlg('Do you want to continue?', 'Continue Operation', 'Yes', 'No', 'Help', 'No'); if strcmp(button, 'Yes') disp('Creating file') elseif strcmp(button, 'No') disp('Canceled file operation') elseif strcmp(button, 'Help') disp('Sorry, no help available') end</pre>		
See Also	di al og, errordl g, hel pdl g, i nput dl g, msgbox, warndl g "Predefined Dialog Boxes" for related functions		


Purpose	Terminate MATLAB	
Graphical Interface	As an alternative to the quit function, use the close box or select Exit MATLAB from the File menu in the MATLAB desktop.	
Syntax	quit quit cancel quit force	
Description	quit terminates MATLAB after running finish. m, if finish. m exists. The workspace is not automatically saved by quit. To save the workspace or perform other actions when quitting, create a finish. m file to perform those actions. If an error occurs while finish. m is running, quit is canceled so that you can correct your finish. m file without losing your workspace.	
	quit cancel is for use in finish. m and cancels quitting. It has no effect anywhere else.	
	quit force bypasses finish. m and terminates MATLAB. Use this to override finish. m, for example, if an errant finish. m will not let you quit.	
Remarks	When using Handle Graphics in finish. m, use ui wait, waitfor, or drawnow so that figures are visible. See the reference pages for these functions for more information.	

Examples Two sample finish. m files are included with MATLAB. Use them to help you create your own finish. m, or rename one of the files to finish. m to use it. • fini shsav. m—Saves the workspace to a MAT-file when MATLAB quits. • fini shdlg.m—Displays a dialog allowing you to cancel quitting; it uses quit cancel and contains the following code: button = questdlg('Ready to quit?', ... 'Exit Dialog', 'Yes', 'No', 'No'); switch button case 'Yes', disp('Exiting MATLAB'); %Save variables to matlab.mat save case 'No', quit cancel; end

See Also

finish, save, startup


Purpose	Quiver or velocity plot		
Syntax	<pre>qui ver(U, V, U, V) qui ver(X, Y) qui ver(, scal e) qui ver(, Li neSpec) qui ver(, Li neSpec, ' filled') h = qui ver()</pre>		
Description	A quiver plot displays velocity vectors as arrows with components (U,V) at the points (X,Y).		
	For example, the first vector is defined by componets $U(1), V(1)$ and is displayed at the point $X(1), Y(1)$.		
	qui ver(X, Y, U, V) plots vectors as arrows at the coordinates specifide in each corresponding pair of elements in X and Y. The matirces X, Y, U, and V must all be the same size and contain corresponding position and velocity components.		
	Expanding X and Y Coordinates MATLAB expandes X and Y, if they are not matrices. This expansion is equivalent to calling meshgrid to generate matrices from vectors:		
	$[X, Y] = \operatorname{meshgrid}(X, Y)$ qui ver(X, Y, U, V)		
	In this case, the following must be true:		
	length(X) = n and length(Y) = m, where [m, n] = size(U) = size(V)		
	The vector X corresponds to the columns of $\tt U$ and $\tt V,$ and vector Y corresponds to the rows of $\tt U$ and $\tt V.$		
	$\operatorname{qui}\operatorname{ver}(U,V)$ draws vectors specified by U and V at equally spaced points in the x-y plane.		
	qui ver $(\ldots, \text{scal e})$ automatically scales the arrows to fit within the grid and then stretches them by the factor scal e. scal e = 2 doubles their relative length and scal e = 0. 5 halves the length. Use scal e = 0 to plot the velocity vectors without the automatic scaling.		

Two-Dimensional Quiver Plots for more examples

quiver3

Purpose	Three-dimensional velocity plot	
Syntax	<pre>qui ver3(X, Y, Z, U, V, W) qui ver3(Z, U, V, W) qui ver3(, scal e) qui ver3(, Li neSpec) qui ver3(, Li neSpec, 'filled') h = qui ver3()</pre>	
Description	A three-dimensional quiver plot displays vectors with components (u,v,w) at the points (x,y,z). qui ver3(X, Y, Z, U, V, W) plots vectors with components (u,v,w) at the points	
	(x,y,z). The matrices X, Y, Z, U, V, W must all be the same size and contain the corresponding position and vector components.	
	qui ver3(Z, U, V, W) plots the vectors at the equally spaced surface points specified by matrix Z. qui ver3 automatically scales the vectors based on the distance between them to prevent them from overlapping.	
	qui ver3(, scal e) automatically scales the vectors to prevent them from overlapping, then multiplies them by scal e. scal e = 2 doubles their relative length and scal e = 0. 5 halves them. Use scal e = 0 to plot the vectors without the automatic scaling.	
	qui ver3(, Li neSpec) specify line type and color using any valid Li neSpec.	
	qui ver3(, Li neSpec, 'filled') fills markers specified by Li neSpec.	
	h = qui ver3() returns a vector of line handles.	
Examples	Plot the surface normals of the function $z = xe^{(-x^2 - y^2)}$. [X, Y] = meshgrid(-2: 0. 25: 2, -1: 0. 2: 1); Z = X. * exp(-X. ^2 - Y. ^2); [U, V, W] = surfnorm(X, Y, Z); quiver3(X, Y, Z, U, V, W, 0. 5); hold on surf(X, Y, Z); colormap hsv	

See Alsoaxi s, contour, Li neSpec, pl ot, pl ot 3, qui ver, surfnorm, vi ew"Direction and Velocity Plots" for related functionsThree-Dimensional Quiver Plots for more examples

Purpose	QZ factorization for generalized eigenvalues		
Syntax	[AA, BB, Q, Z,] = qz(A, B) [AA, BB, Q, Z, V, W] = qz(A, B) qz(A, B, flag)		
Description	 The qz function gives access to intermediate results in the computation of generalized eigenvalues. [AA, BB, Q, Z] = qz(A, B) for square matrices A and B, produces upper quasitriangular matrices AA and BB, and unitary matrices Q and Z such that Q*A*Z = AA, and Q*B*Z = BB. For complex matrices, AA and BB are triangular. [AA, BB, Q, Z, V, W] = qz(A, B) also produces matrices V and W whose columns are generalized eigenvectors. qz(A, B, fl ag) for real matrices A and B, produces one of two decompositions depending on the value of fl ag: 		
	' compl ex' Produces a possibly complex decomposition with a tri AA. For compatibility with earlier versions, ' compl ex' default.		
	' real '	Produces a real decomposition with a quasitriangular AA, containing 1-by-1 and 2-by-2 blocks on its diagonal.	
	If AA is triangular, the diagonal elements of AA and BB, $\alpha = diag(AA)$ and $\beta = diag(BB)$, are the generalized eigenvalues that satisfy		
	$A^*V^*\beta = B^*V^*\alpha$		
	$\beta^* W'^* A = \alpha^* W'^* B$		
	The eigenvalues produced by		
	$\lambda = \operatorname{eig}(\lambda)$	$\lambda = \operatorname{eig}(A, B)$	
	are the ratios of the α s and β s.		
	$\lambda = \alpha . / \beta$		
	If AA is trian	gular, the diagonal elements of AA and BB,	

	al pha = di ag(AA) beta = di ag(BB)		
	are the generalized eigenvalues that satisfy		
	A*V*di ag(beta) = B*V*di ag(al pha) di ag(beta) *W' *A = di ag(al pha) *W' *B		
	The eigenvalues produced by		
	l ambda = eig(A, B)		
	are the element-wise ratios of al pha and beta.		
	lambda = alpha ./ beta		
	If AA is not triangular, it is necessary to further reduce the 2-by-2 blocks to obtain the eigenvalues of the full system.		
Algorithm	For real QZ on real A and real B, eig uses the LAPACK DGGES routine. If you request the fifth output V, eig also uses DTGEVC.		
	For complex QZ on real or complex A and B, eig uses the LAPACK ZGGES routine. If you request the fifth output V, eig also uses ZTGEVC.		
See Also	eig		
References	[1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, <i>LAPACK User's Guide</i> (http://www.netlib.org/lapack/lug/lapack_lug.html), Third Edition,		
	SIAM, Philadelphia, 1999.		

qz

rand

Purpose	Uniformly distributed random numbers and arrays		
Syntax	<pre>Y = rand(n) Y = rand(m, n) Y = rand([m n]) Y = rand([m n, p,) Y = rand([m n p]) Y = rand(size(A)) rand s = rand('state')</pre>		
Description	The rand function generates arrays of random numbers whose elements are uniformly distributed in the interval (0,1).		
	 Y = rand(n) returns an n-by-n matrix of random entries. An error message appears if n is not a scalar. Y = rand(m, n) or Y = rand([m n]) returns an m-by-n matrix of random entries. Y = rand(m, n, p,) or Y = rand([m n p]) generates random arrays. Y = rand(size(A)) returns an array of random entries that is the same size as A. 		
	rand, by itself, returns a scalar whose value changes each time it's referenced $s = rand('state')$ returns a 35-element vector containing the current state of the uniform generator. To change the state of the generator:		
	rand('state',s)	Resets the state to s.	
	<pre>rand('state', 0)</pre>	Resets the generator to its initial state.	
	<pre>rand('state',j)</pre>	For integer j , resets the generator to its j -th state.	
	rand('state', sum(100*clock))	Resets it to a different state each time.	

Examples

Example 1. R = rand(3, 4) may produce

R =			
0.2190	0.6793	0.5194	0. 0535
0.0470	0.9347	0.8310	0. 5297
0.6789	0. 3835	0.0346	0. 6711

This code makes a random choice between two equally probable alternatives.

```
if rand < .5
    'heads'
else
    'tails'
end</pre>
```

Example 2. Generate a uniform distribution of random numbers on a specified interval [a, b]. To do this, multiply the output of rand by (b-a) then add a. For example, to generate a 5-by-5 array of uniformly distributed random numbers on the interval [10, 50]

a = 10; b = 50;x = a + (b-a) * rand(5)x = 18.1106 10.6110 26.7460 43. 5247 30.1125 17.9489 39.8714 43.8489 10.7856 38.3789 34.1517 27.8039 31.0061 37.2511 27.1557 20.8875 47.2726 18.1059 25.1792 22.1847 17.9526 28.6398 36.8855 43.2718 17.5861

See Also randn, randperm, sprand, sprandn

randn

Purpose	Normally distributed random numbers and arrays		
Syntax	<pre>Y = randn(n) Y = randn(m, n) Y = randn([m n]) Y = randn(m, n, p,) Y = randn([m n p]) Y = randn(size(A)) randn s = randn('state')</pre>		
Description	The randn function generates arrays of random numbers whose elements are normally distributed with mean 0, variance $\sigma^2~=~1$, and standard deviation $\sigma~=~1$.		
	Y = randn(n) returns an n-by-n m appears if n is not a scalar.	natrix of random entries. An error message	
	<pre>Y = randn(m, n) or Y = randn([m n]) returns an m-by-n matrix of random entries. Y = randn(m, n, p,) or Y = randn([m n p]) generates random arrays. Y = randn(si ze(A)) returns an array of random entries that is the same size as A. randn, by itself, returns a scalar whose value changes each time it's referenced. s = randn(' state') returns a 2-element vector containing the current state of the normal generator. To change the state of the generator:</pre>		
	<pre>randn('state',s)</pre>	Resets the state to s.	
	<pre>randn('state', 0)</pre>	Resets the generator to its initial state.	
	<pre>randn('state',j)</pre>	For integer j , resets the generator to its j th state.	
	randn('state', sum(100*clock))	Resets it to a different state each time.	

Examples

Example 1. R = randn(3, 4) may produce

R =			
1.1650	0.3516	0.0591	0.8717
0. 6268	- 0. 6965	1.7971	- 1. 4462
0. 0751	1.6961	0. 2641	-0.7012

For a histogram of the randn distribution, see hist.

Example 2. Generate a random distribution with a specific mean and variance σ^2 . To do this, multiply the output of randn by the standard deviation σ , and then add the desired mean. For example, to generate a 5-by-5 array of random numbers with a mean of .6 that are distributed with a variance of 0.1

```
x = .6 + sqrt(0.1) * randn(5) x =
```

0.8713	0. 4735	0.8114	0. 0927	0.7672
0. 9966	0.8182	0.9766	0.6814	0.6694
0. 0960	0.8579	0. 2197	0. 2659	0. 3085
0. 1443	0.8251	0. 5937	1.0475	- 0. 0864
0.7806	1.0080	0.5504	0.3454	0. 5813

See Also

rand, randperm, sprand, sprandn

randperm

Purpose	Random permutation
Syntax	<pre>p = randperm(n)</pre>
Description	p = randperm(n) returns a random permutation of the integers 1: n.
Remarks	The randperm function calls rand and therefore changes rand's state.
Examples	<pre>randperm(6) might be the vector [3 2 6 4 1 5] or it might be some other permutation of 1: 6.</pre>
See Also	permute

rank

Purpose	Rank of a matrix
Syntax	k = rank(A) k = rank(A, tol)
Description	The rank function provides an estimate of the number of linearly independent rows or columns of a full matrix.
	k = rank(A) returns the number of singular values of A that are larger than the default tolerance, max(size(A))*norm(A)*eps.
	$k \ = \ rank(A, tol) \ returns the number of singular values of A that are larger than tol .$
Remark	Use sprank to determine the structural rank of a sparse matrix.
Algorithm	There are a number of ways to compute the rank of a matrix. MATLAB uses the method based on the singular value decomposition, or SVD. The SVD algorithm is the most time consuming, but also the most reliable.
	The rank algorithm is
	<pre>s = svd(A); tol = max(size(A))*s(1)*eps; r = sum(s > tol);</pre>
See Also	sprank
References	 [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, <i>LAPACK User's Guide</i> (http://www.netlib.org/lapack/lug/lapack_lug.html), Third Edition, SIAM, Philadelphia, 1999.

rat, rats

Purpose	Rational fraction approximation
Syntax	<pre>[N, D] = rat(X) [N, D] = rat(X, tol) rat() S = rats(X, strlen) S = rats(X)</pre>
Description	Even though all floating-point numbers are rational numbers, it is sometimes desirable to approximate them by simple rational numbers, which are fractions whose numerator and denominator are small integers. The rat function attempts to do this. Rational approximations are generated by truncating continued fraction expansions. The rats function calls rat, and returns strings.
	[N, D] = rat(X) returns arrays N and D so that N. /D approximates X to within the default tolerance, 1. e- $6*norm(X(:), 1)$.
	[N, D] = rat(X, tol) returns N. /D approximating X to within tol.
	rat (X) , with no output arguments, simply displays the continued fraction.
	S = rats(X, strlen) returns a string containing simple rational approximations to the elements of X. Asterisks are used for elements that cannot be printed in the allotted space, but are not negligible compared to the other elements in X. strl en is the length of each string element returned by the rats function. The default is strl en = 13, which allows 6 elements in 78 spaces.
	S = rats(X) returns the same results as those printed by MATLAB with format rat.
Examples	Ordinarily, the statement
	s = 1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + 1/7
	produces
	s = 0.7595

However, with format rat or with rats(s) the printed result is s =

s = 319/420

This is a simple rational number. Its denominator is 420, the least common multiple of the denominators of the terms involved in the original expression. Even though the quantity s is stored internally as a binary floating-point number, the desired rational form can be reconstructed.

To see how the rational approximation is generated, the statement rat(s)

produces

1 + 1/(-4 + 1/(-6 + 1/(-3 + 1/(-5))))

And the statement

[n, d] = rat(s)

produces

n = 319, d = 420

The mathematical quantity π is certainly not a rational number, but the MATLAB quantity pi that approximates it is a rational number. pi is the ratio of a large integer and 2^{52} :

14148475504056880/4503599627370496

However, this is not a simple rational number. The value printed for pi with format rat, or with rats(pi), is

355/113

This approximation was known in Euclid's time. Its decimal representation is

3. 14159292035398

and so it agrees with pi to seven significant figures. The statement

rat(pi)

produces

3 + 1/(7 + 1/(16))

This shows how the 355/113 was obtained. The less accurate, but more familiar approximation 22/7 is obtained from the first two terms of this continued fraction.

Algorithm

The rat(X) function approximates each element of X by a continued fraction of the form

$$\frac{n}{d} = d_1 + \frac{1}{d_2 + \frac{1}{\left(d_3 + \dots + \frac{1}{d_k}\right)}}$$

The *ds* are obtained by repeatedly picking off the integer part and then taking the reciprocal of the fractional part. The accuracy of the approximation increases exponentially with the number of terms and is worst when X = sqrt(2). For x = sqrt(2), the error with k terms is about 2. 68*(.173) ^k, so each additional term increases the accuracy by less than one decimal digit. It takes 21 terms to get full floating-point accuracy.

See Also format

Purpose	Create rubberband box for area selection
Syntax	<pre>rbbox rbbox(initialRect) rbbox(initialRect, fixedPoint) rbbox(initialRect, fixedPoint, stepSize) finalRect = rbbox()</pre>
Description	rbbox initializes and tracks a rubberband box in the current figure. It sets the initial rectangular size of the box to 0, anchors the box at the figure's CurrentPoint, and begins tracking from this point.
	rbbox(initial Rect) specifies the initial location and size of the rubberband box as [x y width height], where x and y define the lower-left corner, and width and height define the size. initial Rect is in the units specified by the current figure's Units property, and measured from the lower-left corner of the figure window. The corner of the box closest to the pointer position follows the pointer until rbbox receives a button-up event.
	rbbox(initial Rect, fixedPoint) specifies the corner of the box that remains fixed. All arguments are in the units specified by the current figure's Units property, and measured from the lower-left corner of the figure window. fixedPoint is a two-element vector, $[x \ y]$. The tracking point is the corner diametrically opposite the anchored corner defined by fixedPoint.
	rbbox(i ni ti al Rect, fi xedPoi nt, stepSi ze) specifies how frequently the rubberband box is updated. When the tracking point exceeds stepSi ze figure units, rbbox redraws the rubberband box. The default stepsize is 1.
	final Rect = $rbbox()$ returns a four-element vector, [x y width height], where x and y are the x and y components of the lower-left corner of the box, and width and height are the dimensions of the box.
Remarks	 rbbox is useful for defining and resizing a rectangular region: For box definition, i ni ti al Rect is [x y 0 0], where (x, y) is the figure's CurrentPoint.

	• For box resizing, i ni ti al Rect defines the rectangular region that you resize (e.g., a legend). fi xedPoi nt is the corner diametrically opposite the tracking point. rbbox returns immediately if a button is not currently pressed. Therefore, you use rbbox with waitforbuttonpress so that the mouse button is down when rbbox is called. rbbox returns when you release the mouse button.		
Examples	Assuming the current view is $vi ew(2)$, use the current axes' CurrentPoint property to determine the extent of the rectangle in dataspace units:		
	k = waitforbuttonpress;		
	<pre>point1 = get(gca, 'CurrentPoint'); finalRect = rbbox; point2 = get(gca, 'CurrentPoint');</pre>	% button down detected % return figure units % button up detected	
	<pre>point1 = point1(1, 1:2); point2 = point2(1, 1:2);</pre>	% extract x and y	
	<pre>p1 = min(point1, point2); offset = abs(point1-point2);</pre>	% calculate locations % and dimensions	
	$ \begin{array}{llllllllllllllllllllllllllllllllllll$		
	hold on axis manual plot(x,y)	% redraw in dataspace units	
See Also	axis, dragrect, waitforbuttonpress		
	"View Control" for related functions		

Purpose	Matrix reciprocal condition number estimate			
Syntax	c = rcond(A)			
Description	c = rcond(A) returns an estimate for the reciprocal of the condition of A in 1-norm using the LAPACK condition estimator. If A is well conditioned, $rcond(A)$ is near 1.0. If A is badly conditioned, $rcond(A)$ is near 0.0. Compared to cond, $rcond$ is a more efficient, but less reliable, method of estimating the condition of a matrix.			
Algorithm	rcond uses LAPACK routines to compute the estimate of the reciprocal condition number:			
	Matrix Routine			
	Real DLANGE, DGETRF, DGECON			
	Complex ZLANGE, ZGETRF, ZGECON			
See Also	cond, condest, norm, normest, rank, svd			
References	[1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, <i>LAPACK User's Guide</i> (http://www.netlib.org/lapack/lug/lapack_lug.html), Third Edition,			

SIAM, Philadelphia, 1999.

readasync

Purpose	Read data asynchronously from the device	
Syntax	readasync(obj) readasync(obj, size)	
Arguments	obj	A serial port object.
	si ze	The number of bytes to read from the device.
Description	readasync(obj) i	nitiates an asynchronous read operation.
	given by si ze. If s	i ze) asynchronously reads, at most, the number of bytes si ze is greater than the difference between the property value and the BytesAvailable property value, an
Remarks	Before you can read data, you must connect obj to the device with the fopen function. A connected serial port object has a Status property value of open. An error is returned if you attempt to perform a read operation while obj is not connected to the device.	
		eadasync only when you configure the ReadAsyncMode 1. readasync is ignored if used when ReadAsyncMode is
	The TransferStatus property indicates if an asynchronous read or write operation is in progress. You can write data while an asynchronous read is in progress because serial ports have separate read and write pins. You can stop asynchronous read and write operations with the stopasync function.	
	BytesAvailable	the amount of data stored in the input buffer with the property. Additionally, you can use the BytesAvailableFcn te an M-file callback function when the terminator or the of data is read.
	•	eting an Asynchronous Read Operation read operation with readasync completes when one of these
	• The terminator	specified by the Termi nator property is read.

- The time specified by the Ti meout property passes.
- The specified number of bytes is read.
- The input buffer is filled (if si ze is not specified).

Because readasync checks for the terminator, this function can be slow. To increase speed, you might want to configure ReadAsyncMode to continuous and continuously return data to the input buffer as soon as it is available from the device.

Example This example creates the serial port object s, connects s to a Tektronix TDS 210 oscilloscope, configures s to read data asynchronously only if readasync is issued, and configures the instrument to return the peak-to-peak value of the signal on channel 1.

```
s = serial('COM1');
fopen(s)
s. ReadAsyncMode = 'manual';
fprintf(s, 'Measurement: Meas1: Source CH1')
fprintf(s, 'Measurement: Meas1: Type Pk2Pk')
fprintf(s, 'Measurement: Meas1: Value?')
```

Begin reading data asynchronously from the instrument using readasync. When the read operation is complete, return the data to the MATLAB workspace using fscanf.

```
readasync(s)
s. BytesAvailable
ans =
    15
out = fscanf(s)
out =
2. 0399999619E0
fclose(s)
```

See Also Functions

fopen, stopasync

Properties

BytesAvailable, BytesAvailableFcn, ReadAsyncMode, Status, TransferStatus

Purpose	Real part of complex number
Syntax	X = real(Z)
Description	X = real(Z) returns the real part of the elements of the complex array Z.
Examples	real (2+3*i) is 2.
See Also	abs, angle, conj,i,j,imag

Purpose	Natural logarithm for nonnegative real arrays		
Syntax	Y = reallog(X)		
Description	Y = real log(X) returns the natural logarithm of each element in array X. Array X must contain only nonnegative real numbers. The size of Y is the same as the size of X.		
Examples	M = magic(4)		
	$M = \frac{16 \ 2 \ 3 \ 13}{5 \ 11 \ 10 \ 2}$		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
	4 14 15 1		
	reallog(M)		
	ans =		
	$2.\ 7726 \qquad 0.\ 6931 \qquad 1.\ 0986 \qquad 2.\ 5649$		
	1. 6094 2. 3979 2. 3026 2. 0794		
	2. 1972 1. 9459 1. 7918 2. 4849		
	1. 3863 2. 6391 2. 7081 0		
See Also	l og, real pow, real sqrt		

realmax

Purpose	Largest positive floating-point number
Syntax	n = realmax
Description	n = real max returns the largest floating-point number representable on a particular computer. Anything larger overflows.
Examples	real max is one bit less than 2^{1024} or about 1. 7977e+308.
Algorithm	The real max function is equivalent to $pow2(2 - eps, maxexp)$, where maxexp is the largest possible floating-point exponent.
	Execute type real max to see maxexp for various computers.
See Also	eps, realmin

Purpose	Smallest positive floating-point number
Syntax	n = realmin
Description	n = real min returns the smallest positive normalized floating-point number on a particular computer. Anything smaller underflows or is an IEEE "denormal."
Examples	real min is 2 ⁽⁻¹⁰²²⁾ or about 2. 2251e-308.
Algorithm	The real min function is equivalent to pow2(1, minexp) where minexp is the smallest possible floating-point exponent.
	Execute type real min to see minexp for various computers.
See Also	eps, real max

realpow

Purpose	Array power for real-only output
Syntax	Z = real pow(X, Y)
Description	Z = real pow(X, Y) raises each element of array X to the power of its corresponding element in array Y. Arrays X and Y must be the same size. The range of real pow is the set of all real numbers, i.e., all elements of the output array Z must be real.
Examples	$X = -2^* ones(3, 3)$
	X = -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 Y = pascal (3) ans = 1 1 1 1 1 2 3 1 3 6
	real pow(X, Y)
	ans = -2 -2 -2 -2 -2 -8 -8 -2 -8 -8

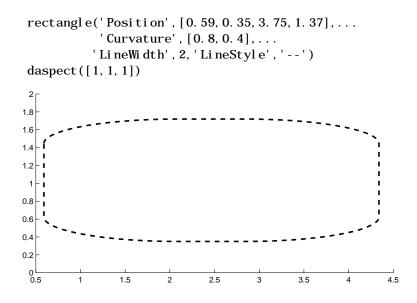
reallog, real sqrt, . ^ (array power operator)

Purpose	Square root for nonnegative real arrays	
Syntax	Y = real sqrt(X)	
Description	Y = real sqrt(X) returns the square root of each element of array X. Array X must contain only nonnegative real numbers. The size of Y is the same as the size of X.	
Examples	M = magic(4)	
	M =	
	16 2 3 13	
	5 11 10 8	
	9 7 6 12	
	4 14 15 1	
	real sqrt(M)	
	ans =	
	4. 0000 1. 4142 1. 7321 3. 6056	
	2. 2361 3. 3166 3. 1623 2. 8284	
	3. 0000 2. 6458 2. 4495 3. 4641	
	2. 0000 3. 7417 3. 8730 1. 0000	
See Also	reallog, realpow, sqrt, sqrtm	

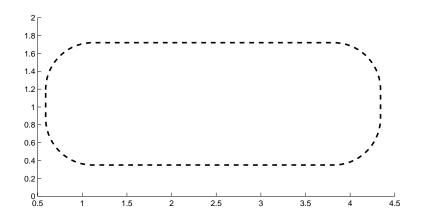
record

Record data and event information to a file	
record(obj) record(obj,' <i>switch</i> ')	
obj	A serial port object.
'switch'	Switch recording capabilities on or off.
record(obj) togg	gles the recording state for obj .
-	<i>tch</i> ') initiates or terminates recording for obj. <i>switch</i> can <i>vitch</i> is on, recording is initiated. If <i>switch</i> is off, recording
Before you can record information to disk, obj must be connected to the device with the fopen function. A connected serial port object has a Status property value of open. An error is returned if you attempt to record information while obj is not connected to the device. Each serial port object must record information to a separate file. Recording is automatically terminated when obj is disconnected from the device with fcl ose.	
The RecordName and RecordMode properties are read-only while obj is recording, and must be configured before using record.	
For a detailed description of the record file format and the properties associated with recording data and event information to a file, refer to "Debugging: Recording Information to Disk."	
<pre>configures s to red disconnects s from s = serial ('d fopen(s) s. RecordDetat s. RecordName record(s, 'on fprintf(s, '*)</pre>	COM1'); il = 'verbose'; = 'MySerialFile.txt'; ') IDN?')
	<pre>record(obj) record(obj,'swi obj 'switch' record(obj) togg record(obj,'swi be on or off. If sw is terminated. Before you can rewith the fopen fut value of open. An obj is not connect information to a s is disconnected fr The RecordName a recording, and ma For a detailed des associated with rewibelings: Record This example creat configures s to record is a serial ('d fopen(s) s. RecordDetailed des </pre>

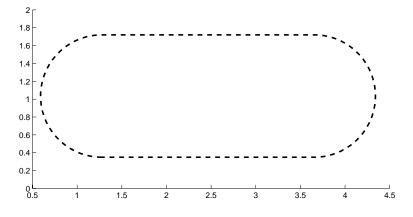
record(s, 'off')
fclose(s)

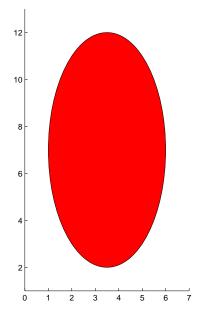

See Also Functions

fclose, fopen

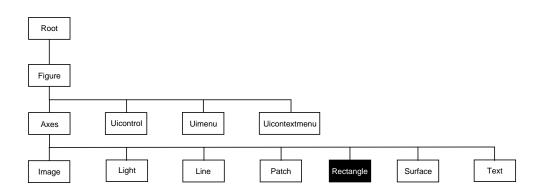

Properties

 ${\tt RecordDetail, RecordMode, RecordName, RecordStatus, Status}$


Purpose	Create a 2-D rectangle object
Syntax	<pre>rectangl e rectangl e('Position', [x, y, w, h]) rectangl e(, 'Curvature', [x, y]) h = rectangl e()</pre>
Description	rectangle draws a rectangle with Position [0, 0, 1, 1] and Curvature [0, 0] (i.e., no curvature).
	rectangle('Position', $[x, y, w, h]$) draws the rectangle from the point x,y and having a width of w and a height of h. Specify values in axes data units.
	Note that, to display a rectangle in the specified proportions, you need to set the axes data aspect ratio so that one unit is of equal length along both the x and y axes. You can do this with the command axi s equal or $daspect([1, 1, 1])$.
	rectangl $e(\ldots, 'Curvature', [x, y])$ specifies the curvature of the rectangle sides, enabling it to vary from a rectangle to an ellipse. The horizontal curvature x is the fraction of width of the rectangle that is curved along the top and bottom edges. The vertical curvature y is the fraction of the height of the rectangle that is curved along the left and right edges.
	The values of x and y can range from 0 (no curvature) to 1 (maximum curvature). A value of $[0, 0]$ creates a rectangle with square sides. A value of $[1, 1]$ creates an ellipse. If you specify only one value for Curvature, then the same length (in axes data units) is curved along both horizontal and vertical sides. The amount of curvature is determined by the shorter dimension.
	h = rectangle() returns the handle of the rectangle object created.
Remarks	Rectangle objects are 2-D and can be drawn in an axes only if the view is $[0 \ 90]$ (i.e., vi ew(2)). Rectangles are children of axes and are defined in coordinates of the axes data.
Examples	This example sets the data aspect ratio to [1, 1, 1] so that the rectangle displays in the specified proportions (daspect). Note that the horizontal and vertical curvature can be different. Also, note the effects of using a single value for Curvature.


Specifying a single value of [0. 4] for Curvature produces:

A Curvature of $\left[1\right]$ produces a rectangle with the shortest side completely round:


This example creates an ellipse and colors the face red.

See Also line, patch, rectangle properties

"Object Creation Functions" for related functions

Setting Default Properties

You can set default rectangle properties on the axes, figure, and root levels.

set(0, 'DefaultRectangleProperty', PropertyValue...)
set(gcf, 'DefaultRectangleProperty', PropertyValue...)
set(gca, 'DefaultRectangleProperty', PropertyValue...)

Where *Property* is the name of the rectangle property whose default value you want to set and PropertyVal ue is the value you are specifying. Use set and get to access the surface properties.

Property List The following table lists all rectangle properties and provides a brief description of each. The property name links take you to an expanded description of the properties.

Property Name	Property Description	Property Value
Defining the Rectangle Object		
Curvature	Degree of horizontal and vertical curvature	Value: two-element vector with values between 0 and 1 Default: [0, 0]
EraseMode	Method of drawing and erasing the rectangle (useful for animation)	Values: normal, none, xor, background Default: normal
EdgeCol or	Color of rectangle edges	Value: Col orSpec or none Default: Col orSpec [0, 0, 0]
FaceCol or	Color of rectangle interior	Value: Col orSpec or none Default: none
Li neStyl e	Line style of edges	Values: –, ––, : , –. , none Default: –
Li neWi dt h	Width of edge lines in points	Value: scalar Default: 0. 5 points
Position	Location and width and height of rectangle	Value: [x,y,wi dth,hei ght] Default: [0, 0, 1, 1]

Property Name	Property Description	Property Value
General Information Abo	out Rectangle Objects	
Chi l dren	Rectangle objects have no children	
Parent	Axes object	Value: handle of axes
Selected	Indicate if the rectangle is in a "selected" state.	Value: on, off Default: off
Tag	User-specified label	Value: any string Default: '' (empty string)
Туре	The type of graphics object (read only)	Value: the string ' rectangl e'
UserData	User-specified data	Value: any matrix Default: [] (empty matrix)
Properties Related to Ca	Ilback Routine Execution	
BusyAction	Specify how to handle callback routine interruption	Value: cancel , queue Default: queue
ButtonDownFcn	Define a callback routine that executes when a mouse button is pressed on over the rectangle	Value: string or function handle Default: ' ' (empty string)
CreateFcn	Define a callback routine that executes when a rectangle is created	Value: string or function handle Default: ' ' (empty string)
Del eteFcn	Define a callback routine that executes when the rectangle is deleted (via close or del ete)	Values: string or function handle Default: ' ' (empty string)
I nterrupti bl e	Determine if callback routine can be interrupted	Values: on, of f Default: on (can be interrupted)
UI Context <i>M</i> enu	Associate a context menu with the rectangle	Values: handle of a Uicontextmenu

Property Name	Property Description	Property Value
Controlling Access to Ob	jects	
Handl eVi si bi lity	Determines if and when the rectangle's handle is visible to other functions	Values: on, cal l back, of f Default: on
HitTest	Determines if the rectangle can become the current object (see the Figure CurrentObj ect property)	Values: on, of f Default: on
Controlling the Appeara	nce	
Cl i ppi ng	Clipping to axes rectangle	Values: on, off Default: on
Sel ecti onHi ghl i ght	Highlight rectangle when selected (Sel ected property set to on)	Values: on, of f Default: on
Vi si bl e	Make the rectangle visible or invisible	Values: on, of f Default: on

Modifying Properties	You can set and query graphics object properties in two ways:
	• The Property Editor is an interactive tool that enables you to see and change object property values.
	• The set and get commands enable you to set and query the values of properties
	To change the default value of properties see Setting Default Property Values.
Rectangle Property	This section lists property names along with the type of values each accepts. Curly braces { } enclose default values.
Descriptions	BusyAction cancel {queue}
	<i>Callback routine interruption.</i> The BusyActi on property enables you to control how MATLAB handles events that potentially interrupt executing callback routines. If there is a callback routine executing, subsequently invoked callback routes always attempt to interrupt it. If the Interrupti bl e property of the object whose callback is executing is set to on (the default), then interruption occurs at the next point where the event queue is processed. If the Interrupti bl e property is off, the BusyActi on property (of the object owning the executing callback) determines how MATLAB handles the event. The choices are:
	 cancel – discard the event that attempted to execute a second callback routine.
	 queue – queue the event that attempted to execute a second callback routine until the current callback finishes.
	ButtonDownFcn string or function handle
	<i>Button press callback routine</i> . A callback routine that executes whenever you press a mouse button while the pointer is over the rectangle object. Define this routine as a string that is a valid MATLAB expression or the name of an M-file. The expression executes in the MATLAB workspace.
	See Function Handle Callbacks for information on how to use function handles to define the callback function.
	Children vector of handles
	The empty matrix; rectangle objects have no children.

Clipping {on} | off

Clipping mode. MATLAB clips rectangles to the axes plot box by default. If you set Cl i ppi ng to off, rectangles display outside the axes plot box. This can occur if you create a rectangle, set hold to on, freeze axis scaling (axis manual), and then create a larger rectangle.

CreateFcn string or function handle

Callback routine executed during object creation. This property defines a callback routine that executes when MATLAB creates a rectangle object. You must define this property as a default value for rectangles. For example, the statement,

set(0, 'DefaultRectangleCreateFcn',...

'set(gca, ''DataAspectRatio'', [1, 1, 1])')

defines a default value on the root level that sets the axes DataAspectRatio whenever you create a rectangle object. MATLAB executes this routine after setting all rectangle properties. Setting this property on an existing rectangle object has no effect.

The handle of the object whose CreateFcn is being executed is accessible only through the root CallbackObject property, which you can query using gcbo.

See Function Handle Callbacks for information on how to use function handles to define the callback function.

Curvature one- or two-element vector [x, y]

Amount of horizontal and vertical curvature. This property specifies the curvature of the rectangle sides, which enables the shape of the rectangle to vary from rectangular to ellipsoidal. The horizontal curvature x is the fraction of width of the rectangle that is curved along the top and bottom edges. The vertical curvature y is the fraction of the height of the rectangle that is curved along the left and right edges.

The values of x and y can range from 0 (no curvature) to 1 (maximum curvature). A value of [0, 0] creates a rectangle with square sides. A value of [1, 1] creates an ellipse. If you specify only one value for Curvature, then the same length (in axes data units) is curved along both horizontal and vertical sides. The amount of curvature is determined by the shorter dimension.

Del eteFcn string or function handle

Delete rectangle callback routine. A callback routine that executes when you delete the rectangle object (e.g., when you issue a delete command or clear the axes or figure). MATLAB executes the routine before deleting the object's properties so these values are available to the callback routine.

The handle of the object whose Del eteFcn is being executed is accessible only through the root CallbackObj ect property, which you can query using gcbo.

See Function Handle Callbacks for information on how to use function handles to define the callback function.

EdgeColor {ColorSpec} | none

Color of the rectangle edges. This property specifies the color of the rectangle edges as a color or specifies that no edges be drawn.

EraseMode {normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses to draw and erase rectangle objects. Alternative erase modes are useful for creating animated sequences, where control of the way individual objects redraw is necessary to improve performance and obtain the desired effect.

- normal (the default) Redraw the affected region of the display, performing the three-dimensional analysis necessary to ensure that all objects are rendered correctly. This mode produces the most accurate picture, but is the slowest. The other modes are faster, but do not perform a complete redraw and are therefore less accurate.
- none Do not erase the rectangle when it is moved or destroyed. While the object is still visible on the screen after erasing with EraseMode none, you cannot print it because MATLAB stores no information about its former location.
- xor Draw and erase the rectangle by performing an exclusive OR (XOR) with the color of the screen beneath it. This mode does not damage the color of the objects beneath the rectangle. However, the rectangle's color depends on the color of whatever is beneath it on the display.
- background Erase the rectangle by drawing it in the Axes' background Col or, or the Figure background Col or if the Axes Col or is set to none. This damages objects that are behind the erased rectangle, but rectangles are always properly colored.

Printing with Non-normal Erase Modes.

MATLAB always prints Figures as if the EraseMode of all objects is normal. This means graphics objects created with EraseMode set to none, xor, or background can look different on screen than on paper. On screen, MATLAB may mathematically combine layers of colors (e.g., XORing a pixel color with that of the pixel behind it) and ignore three-dimensional sorting to obtain greater rendering speed. However, these techniques are not applied to the printed output.

You can use the MATLAB getframe command or other screen capture application to create an image of a Figure containing non-normal mode objects.

FaceColorColorSpec | {none}

Color of rectangle face. This property specifies the color of the rectangle face, which is not colored by default.

HandleVisibility {on} | callback | off

Control access to object's handle by command-line users and GUIs. This property determines when an object's handle is visible in its parent's list of children. Handl eVi si bility is useful for preventing command-line users from accidentally drawing into or deleting a figure that contains only user interface devices (such as a dialog box).

Handles are always visible when HandleVisibility is on.

Setting Handl eVi si bi l i ty to cal l back causes handles to be visible from within callback routines or functions invoked by callback routines, but not from within functions invoked from the command line. This provides a means to protect GUIs from command-line users, while allowing callback routines to have complete access to object handles.

Setting Handl eVi si bi l i ty to off makes handles invisible at all times. This may be necessary when a callback routine invokes a function that might potentially damage the GUI (such as evaling a user-typed string), and so temporarily hides its own handles during the execution of that function.

When a handle is not visible in its parent's list of children, it cannot be returned by functions that obtain handles by searching the object hierarchy or querying handle properties. This includes get, findobj, gca, gcf, gco, newplot, cl a, cl f, and cl ose.

When a handle's visibility is restricted using call back or off, the object's handle does not appear in its parent's Children property, figures do not appear in the root's CurrentFigure property, objects do not appear in the root's CallbackObj ect property or in the figure's CurrentObj ect property, and Axes do not appear in their parent's CurrentAxes property.

You can set the Root ShowHi ddenHandl es property to on to make all handles visible, regardless of their Handl eVi si bility settings (this does not affect the values of the Handl eVi si bility properties).

Handles that are hidden are still valid. If you know an object's handle, you can set and get its properties, and pass it to any function that operates on handles.

HitTest {on} | off

Selectable by mouse click. Hi tTest determines if the rectangle can become the current object (as returned by the gco command and the figure CurrentObj ect property) as a result of a mouse click on the rectangle. If Hi tTest is off, clicking on the rectangle selects the object below it (which may be the axes containing it).

Interruptible {on} | off

Callback routine interruption mode. The Interrupti bl e property controls whether a rectangle callback routine can be interrupted by subsequently invoked callback routines. Only callback routines defined for the ButtonDownFcn are affected by the Interrupti bl e property. MATLAB checks for events that can interrupt a callback routine only when it encounters a drawnow, figure, getframe, or pause command in the routine.

LineStyle {-} | -- | : | -. | none

Line style of rectangle edge. This property specifies the line style of the edges. The available line styles are:

Symbol	Line Style
_	solid line (default)
	dashed line
:	dotted line
	dash-dot line

rectangle properties

Symbol	Line Style
none	no line

LineWidth scalar

The width of the rectangle edge line. Specify this value in points (1 point = $1/_{72}$ inch). The default Li neWi dth is 0.5 points.

Parent handle

rectangle's parent. The handle of the rectangle object's parent axes. You can move a rectangle object to another axes by changing this property to the new axes handle.

Position four-element vector [x, y, width, height]

Location and size of rectangle. This property specifies the location and size of the rectangle in the data units of the axes. The point defined by x, y specifies one corner of the rectangle, and wi dth and height define the size in units along the x and y axes respectively.

Selected on | off

Is object selected? When this property is on MATLAB displays selection handles if the Sel ectionHi ghl i ght property is also on. You can, for example, define the ButtonDownFcn to set this property, allowing users to select the object with the mouse.

SelectionHighlight {on} | off

Objects highlight when selected. When the Selected property is on, MATLAB indicates the selected state by drawing handles at each vertex. When SelectionHighlight is off, MATLAB does not draw the handles.

Tag string

User-specified object label. The Tag property provides a means to identify graphics objects with a user-specified label. This is particularly useful when constructing interactive graphics programs that would otherwise need to define object handles as global variables or pass them as arguments between callback routines. You can define Tag as any string.

Type string (read only)

Class of graphics object. For rectangle objects, Type is always the string ' rectangl e'.

UIContextMenu handle of a uicontextmenu object

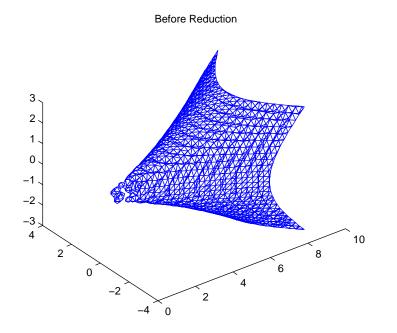
Associate a context menu with the rectangle. Assign this property the handle of a uicontextmenu object created in the same figure as the rectangle. Use the ui contextmenu function to create the context menu. MATLAB displays the context menu whenever you right-click over the rectangle.

UserData matrix

User-specified data. Any data you want to associate with the rectangle object. MATLAB does not use this data, but you can access it using the set and get commands.

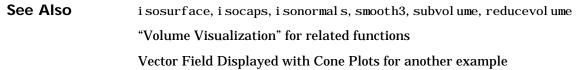
Visible {on} | off

rectangle visibility. By default, all rectangles are visible. When set to off, the rectangle is not visible, but still exists and you can get and set its properties.

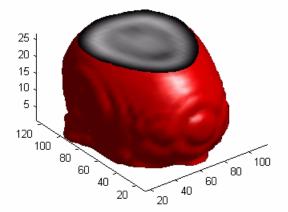

rectint

Purpose	Rectangle intersection area.
Syntax	area = rectint(A, B)
Description	area = rectint(A, B) returns the area of intersection of the rectangles specified by position vectors A and B.
	If A and B each specify one rectangle, the output area is a scalar.
	A and B can also be matrices, where each row is a position vector. area is then a matrix giving the intersection of all rectangles specified by A with all the rectangles specified by B. That is, if A is n-by-4 and B is m-by-4, then area is an n-by-m matrix where $area(i,j)$ is the intersection area of the rectangles specified by the i th row of A and the j th row of B.
	Note A position vector is a four-element vector $[x, y, wi dth, height]$, where the point defined by x and y specifies one corner of the rectangle, and wi dth and height define the size in units along the x and y axes respectively.
See Also	polyarea

Purpose	Reduce the number of patch faces
Syntax	<pre>reducepatch(p, r) nfv = reducepatch(p, r) nfv = reducepatch(fv, r) reducepatch(, 'fast') reducepatch(, 'verbose') nfv = reducepatch(f, v, r) [nf, nv] = reducepatch()</pre>
Description	reducepatch(p, r) reduces the number of faces of the patch identified by handle p, while attempting to preserve the overall shape of the original object. MATLAB interprets the reduction factor r in one of two ways depending on its value:
	• If r is less than 1, r is interpreted as a fraction of the original number of faces. For example, if you specify r as 0.2, then the number of faces is reduced to 20% of the number in the original patch.
	• If r is greater than or equal to 1, then r is the target number of faces. For example, if you specify r as 400, then the number of faces is reduced until there are 400 faces remaining.
	nfv = reducepatch(p, r) returns the reduced set of faces and vertices but does not set the Faces and Vertices properties of patch p. The struct nfv contains the faces and vertices after reduction.
	nfv = reducepatch(fv, r) performs the reduction on the faces and vertices in the struct fv.
	nfv = reducepatch(p) or $nfv = reducepatch(fv)$ uses a reduction value of 0.5.
	$reducepatch(\ldots, 'fast')$ assumes the vertices are unique and does not compute shared vertices.
	$reducepatch(\ldots, 'verbose')$ prints progress messages to the command window as the computation progresses.
	nfv = reducepatch(f, v, r) performs the reduction on the faces in f and the vertices in v.


reducepatch

	[nf, nv] = reduce patch() returns the faces and vertices in the arrays nf and nv.
Remarks	If the patch contains nonshared vertices, MATLAB computes shared vertices before reducing the number of faces. If the faces of the patch are not triangles, MATLAB triangulates the faces before reduction. The faces returned are always defined as triangles.
	The number of output triangles may not be exactly the number specified with the reduction factor argument (r), particularly if the faces of the original patch are not triangles.
Examples	This example illustrates the effect of reducing the number of faces to only 15% of the original value.
	<pre>[x, y, z, v] = flow; p = patch(isosurface(x, y, z, v, -3)); set(p, 'facecolor', 'w', 'EdgeColor', 'b'); daspect([1, 1, 1]) view(3) figure; h = axes; p2 = copyobj(p, h); reducepatch(p2, 0. 15) daspect([1, 1, 1]) view(3)</pre>



After Reduction to 15% of Original Number of Faces

Purpose	Reduce the number of elements in a volume data set
Syntax	<pre>[nx, ny, nz, nv] = reducevolume(X, Y, Z, V, [Rx, Ry, Rz]) [nx, ny, nz, nv] = reducevolume(V, [Rx, Ry, Rz]) nv = reducevolume()</pre>
Description	[nx, ny, nz, nv] = reducevol ume(X, Y, Z, V, [Rx, Ry, Rz]) reduces the numberof elements in the volume by retaining every Rxth element in the x direction,every Ryth element in the y direction, and every Rzth element in the z direction.If a scalar R is used to indicate the amount or reduction instead of a 3-elementvector, MATLAB assumes the reduction to be [R R R].
	The arrays X, Y, and Z define the coordinates for the volume V. The reduced volume is returned in nv and the coordinates of the reduced volume are returned in nx , ny , and nz .
	[nx, ny, nz, nv] = reducevolume(V, [Rx, Ry, Rz]) assumes the arrays X, Y, and Z are defined as $[X, Y, Z] = meshgrid(1: n, 1: m, 1: p)$ where $[m, n, p] = size(V)$.
	nv = reducevol ume() returns only the reduced volume.
Examples	This example uses a data set that is a collection of MRI slices of a human skull. This data is processed in a variety of ways:
	• The 4-D array is squeezed (squeeze) into three dimensions and then reduced (reducevol ume) so that what remains is every 4^{th} element in the x and y directions and every element in the z direction.
	• The reduced data is smoothed (smooth3).
	• The outline of the skull is an isosurface generated as a patch (p1) whose vertex normals are recalculated to improve the appearance when lighting is applied (patch, i sosurface, i sonormal s).
	• A second patch (p2) with an interpolated face color draws the end caps (FaceCol or, i socaps).
	• The view of the object is set (view, axis, daspect).
	• A 100-element grayscale colormap provides coloring for the end caps (col ormap).

• Adding a light to the right of the camera illuminates the object (caml i ght, l i ght i ng).

See Also i sosurface, i socaps, i sonormal s, smooth3, subvol ume, reducepatch "Volume Visualization" for related functions

refresh

Purpose	Redraw current figure
Syntax	refresh refresh(h)
Description	refresh erases and redraws the current figure.
	refresh(h) redraws the figure identified by h.
See Also	"Figure Windows" for related functions

regexp

Purpose	Match regular expression
Syntax	<pre>start = regexp(str, expr) [start, finish] = regexp(str, expr) [start, finish, tokens] = regexp(str, expr) [] = regexp(str, expr, 'once')</pre>
Description	<pre>start = regexp(str, expr) returns a row vector, start, containing the indices of the substrings in str that match the regular expression string, expr.</pre>
	When either str or $expr$ is a cell array of strings, $regexp$ returns an m-by-n cell array of row vectors of indices, where m is the the number of strings in str and n is the number of regular expression patterns in $expr$.
	<pre>[start, finish] = regexp(str, expr) returns an additional row vector finish, that contains the indices of the last character of the corresponding substrings in start.</pre>
	[start, finish, tokens] = regexp(str, expr) returns a 1-by-n cell array, tokens, of beginining and ending indices of tokens within the corresponding substrings in start and finish. Tokens are denoted by parentheses in the expression, expr.
	$[\dots] = regexp(str, expr, 'once')$ finds just the first match. (By default, regexp returns all matches.) If no matches are found, then all return values are empty.
Remarks	See "Regular Expressions", in the MATLAB documentation, for a listing of all regular expression metacharacters supported by MATLAB.
	regexp does not support international character sets.
Examples	Example 1 Return a row vector of indices that match words that start with c , end with t , and contain one or more vowels between them:
	<pre>str = 'bat cat can car coat court cut ct caoueouat'; regexp(str, 'c[aeiou]+t') ans =</pre>

Example 2

Return a cell array of row vectors of indices that match capital letters and whitespaces in the cell array of strings, str:

```
str = \{ 'Madrid, Spain' 'Romeo and Juliet' 'MATLAB is great' \}; \\s = regexp(str, \{ '[A-Z]' ' \s' \});
```

Capital letters, '[A-Z]', were found at these str indices:

```
s\{:, 1\}
ans =
1 9
ans =
1 11
ans =
1 2 3 4 5 6
```

Space characters, '\s', were found at these str indices:

```
s{:,2}
ans =
8
ans =
6 10
ans =
7 10
```

Example 3

Return the starting and ending indices of words containing the letter x:

Example 4

Return the starting and ending indices of substrings contained by the letter s. Also return the starting and ending indices of the token defined within the parentheses:

See Also regexpi, regexprep, strfind, findstr, strmatch, strcmp, strcmpi, strncmp, strncmpi

Purpose	Match regular expression, ignoring case				
Syntax	<pre>start = regexpi(str, expr) [start, finish] = regexpi(str, expr) [start, finish, tokens] = regexpi(str, expr) [] = regexpi(str, expr, 'once')</pre>				
Description	start = regexpi (str, expr) returns a row vector, start, containing the indices of the substrings in str that match the regular expression string, expr, regardless of case.				
	When either str or expr is a cell array of strings, regexpi returns an m-by-n cell array of row vectors of indices, where m is the the number of strings in str and n is the number of regular expression patterns in expr.				
	[start, finish] = regexpi (str, expr) returns an additional row vector finish, that contains the indices of the last character of the corresponding substrings in start.				
	[start, finish, tokens] = regexpi (str, expr) returns a 1-by-n cell array, tokens, of beginining and ending indices of tokens within the corresponding substrings in start and finish. Tokens are denoted by parentheses in the expression, expr.				
	$[\dots]$ = regexpi (str, expr, 'once') finds just the first match. (By default, regexp returns all matches.) If no matches are found, then all return values are empty.				
Remarks	See "Regular Expressions", in the MATLAB documentation, for a listing of all regular expression metacharacters supported by MATLAB.				
	regexpi does not support international character sets.				
Examples	Return a row vector of indices that match words that start with ${\tt m}$ and end with y, regardless of case:				
	<pre>str = 'My flowers may bloom in May'; pat = 'm\w*y';</pre>				

regexpi(str, pat) ans = 1 12 25

See Also

regexp, regexprep, strfind, findstr, strmatch, strcmp, strcmpi, strncmp, strncmpi

Purpose	Replace string using regular expression
---------	---

Syntax s = regexprep(str, expr, repl ace)

s = regexprep(str, expr, repl ace, options)

Description s = regexprep(str, expr, replace) replaces all occurrences of the regular expression, expr, in string, str, with the string, replace. The new string is returned. If no matches are found regexprep returns str unchanged.

When any of str, expr, or replace are cell arrays of strings, regexprep returns an m-by-n-by-p cell array of strings, where m is the number of strings in str, n is the number of regular expressions in expr, and p is the number of strings in replace.

s = regexprep(str, expr, repl ace, opti ons) By default, regexprep replaces all matches, is case sensitive, and does not use tokens. You can use one or more of the following options with regexprep.

Option	Description
ignorecase	Ignore the case of characters when matching expr to str .
preservecase	Ignore case when matching (as with ' i gnorecase'), but override the case of repl ace characters with the case of corresponding characters in str when replacing.
tokeni ze	Modify repl ace to use the tokens delimited by parenthesis in expr such that $\$1$ is the first token, $\$2$ is the second token,, and $\$N$ is the Nth token.
once	Replace only the first occurrence of expr in str.
N	Replace only the Nth occurrence of expr in str.

Remarks See "Regular Expressions", in the MATLAB documentation, for a listing of all regular expression metacharacters supported by MATLAB.

regexprep does not support international character sets.

Examples Example 1

Perform a case-sensitive replacement on words starting with m and ending with y:

```
str = 'My flowers may bloom in May';
pat = 'm(\w*)y';
regexprep(str, pat, 'April')
ans =
    My flowers April bloom in May
```

Replace all words starting with m and ending with y, regardless of case, but maintain the original case in the replacement strings:

regexprep(str, pat, 'April', 'preservecase')
ans =
 April flowers april bloom in April

Example 2

Replace all variations of the words ' wal $k \; up'$ using the letters following wal k as a token.

```
str = 'I walk up, they walked up, we are walking up, she walks.';
pat = 'walk(\w*) up';
regexprep(str, pat, 'ascend$1', 'tokenize')
ans =
    I ascend, they ascended, we are ascending, she walks.
```

See Also regexp, regexpi, strfind, findstr, strmatch, strcmp, strcmpi, strncmp, strncmpi

Purpose	Register an event handler with a control's event					
Syntax	<pre>registerevent(h, callback {event1 eventhandler1; event2 eventhandler2;})</pre>					
Arguments	h Handle for a MATLAB COM control object.					
	cal l back Name of an M-function that accepts a variable number of arguments. This function will be called whenever the control triggers an event. Each argument is converted to a MATLAB string. See the section, "Writing Event Handlers" in the External Interfaces/API documentation for more information on handling control events.					
	event Any event associated with h that can be triggered. Specify event using the event name.					
	eventhandl er Name of an M-function that accepts a variable number of arguments. This function will be called whenever the control triggers the event associated with it. See "Writing Event Handlers" in the External Interfaces/API documentation for more information on handling control events.					
Description	Register one or more events with a single callback function or with a separate handler function for each event. You can either register events at the time you create the control (using actxcontrol), or register them dynamically at any time after the control has been created (using registerevent).					
	The strings specified in the call back, event, and event handler arguments are not case sensitive.					
	Note There are two ways to handle events. You can create a single handler (cal l back) for all events, or you can specify a cell array that contains pairs of events and event handlers. In the cell array format, specify events by name in a quoted string. There is no limit to the number of pairs that can be specified in the cell array. Although using the single callback method may be easier in					

some cases, using the cell array technique creates more efficient code that results in better performance.

```
Examples Create an mwsamp control and list all events associated with the control:
    f = figure ('pos', [100 200 200 200]);
    h = actxcontrol ('mwsamp.mwsampctrl.2', [0 0 200 200], f);
    events(h)
    ans =
    Click = void Click()
    DblClick = void DblClick()
    MouseDown = void MouseDown(int16 Button, int16 Shift,
        Variant x, Variant y)
```

Register all events with the same callback routine, sampev. Use the event1 i steners function to see the event handler used by each event:

```
registerevent(h, 'sampev');
eventlisteners(h)
ans =
    'click' 'sampev'
    'dblclick' 'sampev'
    'mousedown' 'sampev'
```

unregisterallevents(h);

Register the Cl i ck and Dbl Cl i ck events with event handlers mycl i ck and my2cl i ck, respectively:

```
registerevent(h, {'click' 'myclick'; 'dblclick' 'my2click'});
eventlisteners(h)
ans =
    'click' 'myclick'
    'dblclick' 'my2click'
```

See Also events, eventlisteners, unregisterevent, unregisterallevents, isevent

Purpose	Refresh function and file system path caches
Syntax	rehashrehashtoolboxrehashtoolboxresetrehashtoolboxresetrehashtoolboxcache
Description	rehash with no arguments updates the MATLAB list of known files and classes for directories on the search path that are not in Smatl abroot/tool box. It compares the timestamps for loaded functions (functions that have been called but not cleared in the current session) against their timestamps on disk. It clears loaded functions if the files on disk are newer. All of this normally happens each time MATLAB displays the Command Window prompt. Therefore, use rehash with no arguments only when you run an M-file that updates another M-file, and the calling file needs to reuse the updated version before it has finished running.
	rehash path performs the same updates as rehash, but uses a different technique for detecting the files and directories that require updates. If you receive a warning during MATLAB startup notifying you that MATLAB could not tell if a directory has changed and you encounter problems with MATLAB using the most current versions of your M-files, run rehash path.
	rehash toolbox updates all directories in <code>\$matl</code> abroot/tool box. Run this when you add or remove files in <code>\$matl</code> abroot/tool box during a session by some means other than MATLAB tools, like the Editor.
	rehash pathreset performs the same updates as rehash path , and also ensures the known files and classes list follows precedence rules for shadowed functions.
	rehash toolboxreset performs the same updates as rehash toolbox , and also ensures the known files and classes list follows precedence rules for shadowed functions.

rehash

	rehash tool boxcache performs the same updates as rehash tool box , and also updates the cache file. This is the equivalent of clicking the Update Toolbox Path Cache button in General Preferences.
See Also	addpath, clear, path, rmpath
	"Toolbox Path Caching" in MATLAB Development Environment.

Purpose	Release an interface				
Syntax	rel ease(h)				
Arguments	h Handle for a COM object that represents the interface to be released.				
Description	Release the interface and all resources used by the interface. Each interface handle must be released when you are finished manipulating its properties and invoking its methods. Once an interface has been released, it is no longer valid and subsequent operations on the MATLAB object that represents that interface will result in errors.				
	Note Releasing the interface will not delete the control itself (see del et e), since other interfaces on that object may still be active. See "Releasing Interfaces" in the External Interfaces/API documentation for more information.				
Examples	<pre>Create a Microsoft Calender application. Then create a TitleFont interface and use it to change the appearance of the font of the calendar's title: f = figure('pos', [300 300 500 500]); cal = actxcontrol('mscal.calendar', [0 0 500 500], f); TFont = get(cal, 'TitleFont') TFont = Interface.mscal.calendar.TitleFont set(TFont, 'Name', 'Viva BoldExtraExtended'); set(TFont, 'Bold', 0); When you're finished working with the title font, release the TitleFont interface: release(TFont); Now create a GridFont interface and use it to modify the size of the calendar's date numerals:</pre>				

```
GFont = get(cal, 'GridFont')
GFont =
Interface.mscal.calendar.GridFont
set(GFont, 'Size', 16);
When you're done, delete the cal object and the figure window:
```

delete(cal); delete(f); clear f;

See Also del ete, save, load, actxcontrol, actxserver

Purpose	Remainder after division
Syntax	R = rem(X, Y)
Description	$R = rem(X, Y)$ if $Y \sim = 0$, returns $X - n$. *Y where $n = fix(X. /Y)$. If Y is not an integer and the quotient X. /Y is within roundoff error of an integer, then n is that integer. By convention, $rem(X, 0)$ is NaN. The inputs X and Y must be real arrays of the same size, or real scalars.
Remarks	So long as operands X and Y are of the same sign, the statement $rem(X, Y)$ returns the same result as does $mod(X, Y)$. However, for positive X and Y, rem(-X, Y) = mod(-X, Y) - Y
	The rem function returns a result that is between 0 and si $gn(X) * abs(Y)$. If Y is zero, rem returns NaN.
See Also	mod

repmat

Purpose	Replicate and tile an array								
Syntax	<pre>B = repmat(A, m, n) B = repmat(A, [m n]) B = repmat(A, [m n p]) repmat(A, m, n)</pre>								
Description	B = repmat(A, m, n) creates a large matrix B consisting of an m-by-n tiling of copies of A. The statement repmat(A, n) creates an n-by-n tiling.								
	B = rep	omat(A	, [m n]) accon	plishe	s the sa	me res	ult as r	repmat(A, m, n).
	B = repmat(A, [m n p]) produces a multidimensional (m-by-n-by-p-by) array composed of copies of A. A may be multidimensional.								
	-				-			•	atrix filled with A's m or n is large.
Examples	In this example, repmat replicates 12 copies of the second-order identity matrix, resulting in a "checkerboard" pattern.								
	B = repmat(eye(2), 3, 4)								
	B =								
		1	0	1	0	1	0	1	0
		0	1	0	1	0	1	0	1
		1 0	0 1	1 0	0 1	1 0	0 1	1 0	0 1
		1	0	1	0	1	0	1	0
		0	1	0	1	0	1	0	1

The statement N = repmat (NaN, [2 3]) creates a 2-by-3 matrix of NaNs.

Purpose	Reset graphics object properties to their defaults			
Syntax	reset(h)			
Description	reset(h) resets all properties having factory defaults on the object identified by h. To see the list of factory defaults, use the statement,			
	<pre>get(0, 'factory')</pre>			
	If h is a figure, MATLAB does not reset <code>Position</code> , <code>Units</code> , <code>PaperPosition</code> , and <code>PaperUnits</code> . If h is an axes, MATLAB does not reset <code>Position</code> and <code>Units</code> .			
Examples	reset(gca) resets the properties of the current axes.			
	reset(gcf) resets the properties of the current figure.			
See Also	cl a, cl f, gca, gcf, hol d "Object Manipulation" for related functions			

reshape

Purpose	Reshape array						
Syntax	<pre>B = reshape(A, m, n) B = reshape(A, m, n, p,) B = reshape(A, [m n p]) B = reshape(A,, [],) B = reshape(A, si z)</pre>						
Description	B = reshape(A, m, n) returns the m-by-n matrix B whose elements are taken column-wise from A. An error results if A does not have m*n elements.						
	B = reshape(A, m, n, p,) or $B = reshape(A, [m n p])$ returns an N-D array with the same elements as A but reshaped to have the size m-by-n-by-p-by The product of the specified dimensions, $m*n*p*$, must be the same as $prod(size(A))$.						
	B = reshape(A,, [],) calculates the length of the dimension represented by the placeholder [], such that the product of the dimensions equals $prod(si ze(A))$. The value of $prod(si ze(A))$ must be evenly divisible by the product of the specified dimensions. You can use only one occurence of [].						
	B = reshape(A, siz) returns an N-D array with the same elements as A, but reshaped to siz, a vector representing the dimensions of the reshaped array. The quantity $prod(siz)$ must be the same as $prod(size(A))$.						
Examples	Reshape a 3-by-4 matrix into a 2-by-6 matrix.						
	$A = \begin{bmatrix} 1 & 4 & 7 & 10 \\ 2 & 5 & 8 & 11 \\ 3 & 6 & 9 & 12 \end{bmatrix}$ B = reshape(A, 2, 6) $B = \begin{bmatrix} 1 & 3 & 5 & 7 & 9 & 11 \end{bmatrix}$						
	2 4 6 8 10 12						
	B = reshape(A, 2, [])						

B =						
1	1	3	5	7	9	11
	2	4	6	8	10	12

See Also

shiftdim, squeeze

The colon operator :

residue

Purpose	Convert between partial fraction expansion and polynomial coefficients
Syntax	<pre>[r, p, k] = residue(b, a) [b, a] = residue(r, p, k)</pre>
Description	The resi due function converts a quotient of polynomials to pole-residue representation, and back again.
	[r, p, k] = residue(b, a) finds the residues, poles, and direct term of a partial fraction expansion of the ratio of two polynomials, $b(s)$ and $a(s)$, of the form
	$\frac{b(s)}{a(s)} = \frac{b_1 s^m + b_2 s^{m-1} + b_3 s^{m-2} + \dots + b_{m+1}}{a_1 s^n + a_2 s^{n-1} + a_3 s^{n-2} + \dots + a_{n+1}}$
	where b_j and a_j are the j th elements of the input vectors b and a.
	[b, a] = residue(r, p, k) converts the partial fraction expansion back to the polynomials with coefficients in b and a.
Definition	If there are no multiple roots, then
Definition	If there are no multiple roots, then $\frac{b(s)}{a(s)} = \frac{r_1}{s - p_1} + \frac{r_2}{s - p_2} + \dots + \frac{r_n}{s - p_n} + k(s)$
Definition	
Definition	$\frac{b(s)}{a(s)} = \frac{r_1}{s - p_1} + \frac{r_2}{s - p_2} + \dots + \frac{r_n}{s - p_n} + k(s)$
Definition	$\frac{b(s)}{a(s)} = \frac{r_1}{s - p_1} + \frac{r_2}{s - p_2} + \dots + \frac{r_n}{s - p_n} + k(s)$ The number of poles n is
Definition	$\frac{b(s)}{a(s)} = \frac{r_1}{s - p_1} + \frac{r_2}{s - p_2} + \dots + \frac{r_n}{s - p_n} + k(s)$ The number of poles n is $n = l \operatorname{ength}(a) - 1 = l \operatorname{ength}(r) = l \operatorname{ength}(p)$ The direct term coefficient vector is empty if l ength(b) < l ength(a);
Definition	$\frac{b(s)}{a(s)} = \frac{r_1}{s - p_1} + \frac{r_2}{s - p_2} + \dots + \frac{r_n}{s - p_n} + k(s)$ The number of poles n is $n = l \operatorname{ength}(a) - 1 = l \operatorname{ength}(r) = l \operatorname{ength}(p)$ The direct term coefficient vector is empty if $l \operatorname{ength}(b) < l \operatorname{ength}(a)$; otherwise
Definition	$\frac{b(s)}{a(s)} = \frac{r_1}{s - p_1} + \frac{r_2}{s - p_2} + \dots + \frac{r_n}{s - p_n} + k(s)$ The number of poles n is $n = l \operatorname{ength}(a) - 1 = l \operatorname{ength}(r) = l \operatorname{ength}(p)$ The direct term coefficient vector is empty if $l \operatorname{ength}(b) < l \operatorname{ength}(a)$; otherwise $l \operatorname{ength}(k) = l \operatorname{ength}(b) - l \operatorname{ength}(a) + 1$ If $p(j) = \dots = p(j + m - 1)$ is a pole of multiplicity m, then the expansion

Arguments	b, a	Vectors that specify the coefficients of the polynomials in descending powers of \boldsymbol{s}
	r	Column vector of residues
	р	Column vector of poles
	k	Row vector of direct terms
Algorithm	direct Final indiv	at obtains the poles with roots. Next, if the fraction is nonproper, the t term k is found using deconv, which performs polynomial long division. ly, the residues are determined by evaluating the polynomial with idual roots removed. For repeated roots, resi 2 computes the residues at epeated root locations.
Limitations	Numerically, the partial fraction expansion of a ratio of polynomials represents an ill-posed problem. If the denominator polynomial, $a(s)$, is near a polynomial with multiple roots, then small changes in the data, including roundoff errors, can make arbitrarily large changes in the resulting poles and residues. Problem formulations making use of state-space or zero-pole representations are preferable.	
Evamplas	If the	notic of two polynomials is symposed as

Examples If the ratio of two polynomials is expressed as

$$\frac{b(s)}{a(s)} = \frac{5s^3 + 3s^2 - 2s + 7}{-4s^3 + 8s + 3}$$

then

b = [5 3 -2 7]a = [-4 0 8 3]

and you can calculate the partial fraction expansion as

```
[r, p, k] = residue(b, a)
r =
    -1.4167
    -0.6653
    1.3320
```

p = 1.5737 -1.1644 -0.4093 k = -1.2500

Now, convert the partial fraction expansion back to polynomial coefficients.

[b, a] = resi due(r, p, k) b = -1.2500 - 0.7500 0.5000 - 1.7500 a = 1.0000 - 0.0000 - 2.0000 - 0.7500

The result can be expressed as

$$\frac{b(s)}{a(s)} = \frac{-1.25s^3 - 0.75s^2 + 0.50s - 1.75}{s^3 - 2.00s - 0.75}$$

Note that the result is normalized for the leading coefficient in the denominator.

See Also deconv, poly, roots

References [1] Oppenheim, A.V. and R.W. Schafer, *Digital Signal Processing*, Prentice-Hall, 1975, p. 56.

rethrow

Purpose Reissue error

Syntax rethrow(err)

Description rethrow(err) reissues the error specified by err. The currently running M-file terminates and control returns to the keyboard (or to any enclosing catch block). The err argument must be a MATLAB structure containing the following character array fields.

Fieldname	Description
message	Text of the error message
i denti fi er	Message identifier of the error message

See "Message Identifiers" in the MATLAB documentation for more information on the syntax and usage of message identifiers.

A convenient way to get a valid err structure for the last error issued is by using the last error function.

Examples rethrow is usually used in conjunction with try-catch statements to reissue an error from a catch block after performing catch-related operations. For example:

try
 do_something
catch
 do_cleanup
 rethrow(lasterror)
end

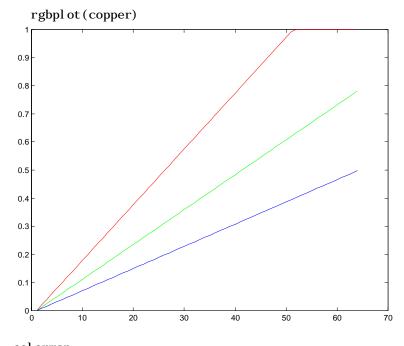
See Also error, lasterror, lasterr, try, catch, dbstop

return

Purpose	Return to the invoking function	
Syntax	return	
Description	return causes a normal return to the invoking function or to the keyboard. It also terminates keyboard mode.	
Examples	<pre>If the determinant function were an M-file, it might use a return statement in handling the special case of an empty matrix as follows: function d = det(A) %DET det(A) is the determinant of A. if isempty(A) d = 1; return else end</pre>	
See Also	break, continue, di sp, end, error, for, if, keyboard, switch, while	

Purpose	Convert RGB colormap to HSV colormap
Syntax	cmap = rgb2hsv(M)
Description	cmap = rgb2hsv(M) converts an RGB colormap, M, to an HSV colormap, $cmap$. Both colormaps are <i>m</i> -by-3 matrices. The elements of both colormaps are in the range 0 to 1.
	The columns of the input matrix, M, represent intensities of red, green, and blue, respectively. The columns of the output matrix, cmap, represent hue, saturation, and value, respectively.
	hsv_image = rgb2hsv(rgb_image) converts the RGB image to the equivalent HSV image. RGB is an m-by-n-by-3 image array whose three planes contain the red, green, and blue components for the image. HSV is returned as an m-by-n-by-3 image array whose three planes contain the hue, saturation, and value components for the image.
See Also	bri ghten, col ormap, hsv2rgb,rgbpl ot "Color Operations" for related functions

rgbplot

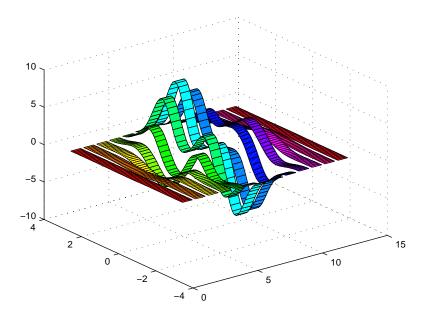

Purpose	Plot colormap
---------	---------------

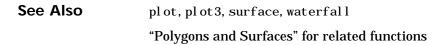
Syntax rgbplot(cmap)

Description rgbpl ot (cmap) plots the three columns of cmap, where cmap is an *m*-by-3 colormap matrix. rgbpl ot draws the first column in red, the second in green, and the third in blue.

Examples

Plot the RGB values of the copper colormap.




col ormap "Color Operations" for related functions

ribbon

Purpose	Ribbon plot
Syntax	<pre>ribbon(Y) ribbon(X, Y) ribbon(X, Y, width) h = ribbon()</pre>
Description	ri bbon(Y) plots the columns of Y as separate three-dimensional ribbons using $X = 1$: si ze(Y, 1).
	ri bbon(X, Y) plots X versus the columns of Y as three-dimensional strips. X and Y are vectors of the same size or matrices of the same size. Additionally, X can be a row or a column vector, and Y a matrix with $l ength(X)$ rows.
	ri bbon(X, Y, wi dth) specifies the width of the ribbons. The default is 0.75.
	h = ri bbon() returns a vector of handles to surface graphics objects. ri bbon returns one handle per strip.
Examples	Create a ribbon plot of the peaks function.
	<pre>[x, y] = meshgrid(-3:.5:3, -3:.1:3); z = peaks(x, y); ribbon(y, z) colormap hsv</pre>

ribbon

rmappdata

Purpose	Remove application-defined data
Syntax	rmappdata(h, name, value)
Description	rmappdata(h, name, value) removes the application-defined data name from the object specified by handle h.
See Also	getappdata, i sappdata, setappdata

rmdir

Purpose	Remove directory
Graphical Interface	As an alternative to the rmdir function, use the delete feature in the Current Directory browser.
Syntax	rmdir('dirname') rmdir('dirname',' s ') [status, message, messageid] = rmdir('dirname',' s ')
Description	rmdir('dirname') removes the directory dirname from the current directory. If the directory is not empty, you must use the s argument. If dirname is not in the current directory, specify the relative path to the current directory or the full path for dirname.
	rmdi r(' di rname', ' s ') removes the directory di rname and its contents from the current directory. This removes all subdirectories and files in the current directory regardless of their write permissions.
	[status, message, messageid] = rmdir('dirname', ' s ') removes the directory dirname and its contents from the current directory, returning the status, a message, and the MATLAB error message ID (see error and lasterr). Here, status is 1 for success and is 0 for no error, and message, messageid, and the s input argument are optional.
Examples	Remove Empty Directory
	To remove ${\tt myfiles}$ from the current directory, where ${\tt myfiles}$ is empty, type
	<pre>rmdir('myfiles')</pre>
	If the current directory is matl abr13/work, and myfiles is in d: /matlabr13/work/project/, use the relative path to myfiles
	<pre>rmdir('project/myfiles')</pre>
	or the full path to myfiles
	<pre>rmdir('d:/matlabr13/work/project/myfiles')</pre>

Remove Directory and All Contents

To remove myfiles, its subdirectories, and all files in the directories, assuming myfiles is in the current directory, type

```
rmdir('myfiles','s')
```

Remove Directory and Return Results

To remove myfiles from the current directory, type

```
[stat, mess, id]=rmdir('myfiles')
```

MATLAB returns

```
stat =
    0
mess =
The directory is not empty.
id =
```

- --

```
MATLAB: RMDIR: OSError
```

indicating the directory myfiles is not empty.

To remove myfiles and its contents, run

[stat, mess]=rmdir('myfiles','s')

and MATLAB returns

```
stat =
1
mess =
```

indicating myfiles and its contents were removed.

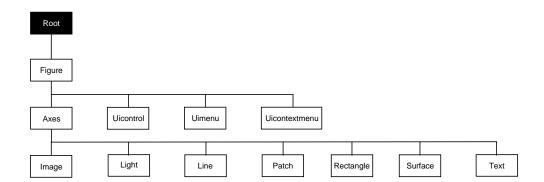
See Also cd, copyfile, delete, dir, error, fileattrib, filebrowser, lasterr, mkdir, movefile

rmfield

Purpose	Remove structure fields
Syntax	<pre>s = rmfield(s, 'field') s = rmfield(s, FIELDS)</pre>
Description	$s \ = \ rmfi \ el \ d(s, \ 'fi \ el \ d') \ removes the specified field from the structure array s.$
	s = rmfi eld(s, FIELDS) removes more than one field at a time when FIELDS is a character array of field names or cell array of strings.
See Also	fieldnames, isfield, orderfields

rmpath

Purpose	Remove directories from MATLAB search path	
Graphical Interface	As an alternative to the rmpath function, use the Set Path dialog box. To open it, select Set Path from the File menu in the MATLAB desktop.	
Syntax	<pre>rmpath('directory') rmpath directory</pre>	
Description	rmpath(' di rectory') removes the specified directory from the current MATLAB search path. Use the full pathname for di rectory.	
	rmpath directory is the unquoted form of the syntax.	
Examples	Remove /usr/local/matlab/mytools from the search path. rmpath /usr/local/matlab/mytools	
See Also	addpath, path, pathtool, rehash	


	Purpose	Root object properties
--	---------	------------------------

Description The root is a graphics object that corresponds to the computer screen. There is only one root object and it has no parent. The children of the root object are figures.

The root object exists when you start MATLAB; you never have to create it and you cannot destroy it. Use set and get to access the root properties.

See Also di ary, echo, fi gure, format, gcf, get, set

Object Hierarchy

Property List The following table lists all root properties and provides a brief description of each. The property name links take you to an expanded description of the properties. This table does not include properties that are defined for, but not used by, the root object.

Property Name	Property Description	Property Value		
Information about MATLAB state				
Callback0bject	Handle of object whose callback is executing	Values: object handle		
CurrentFi gure	Handle of current figure	Values: object handle		

root object

Property Name	Property Description	Property Value
ErrorMessage	Text of last error message	Value: character string
Poi nterLocati on	Current location of pointer	Values: x-, and y-coordinates
Poi nterWi ndow	Handle of window containing the pointer	Values: figure handle
ShowHi ddenHandl es	Show or hide handles marked as hidden	Values: on, off Default: off
Controlling MATLAB beha	avior	
Di ary	Enable the diary file	Values: on, off Default: off
Di aryFile	Name of the diary file	Values: filename (string) Default: di ary
Echo	Display each line of script M-file as executed	Values: on, off Default: off
Format	Format used to display numbers	Values: short, shortE, long longE, bank, hex, +, rat Default: shortE
Format Spaci ng	Display or omit extra line feed	Values: compact, loose Default: loose
Language	System environment setting	Values: string Default: engl i sh
Recursi onLi mi t	Maximum number of nested M-file calls	Values: integer Defalut: 2. 1478e+009
Units	Units for PointerLocation and ScreenSize properties	Values: pixels, normalized inches, centimeters, points, characters Default: pixels

Property Name	Property Description	Property Value
Fi xedWi dthFontName	Value for axes, text, and uicontrol FontName property	Values: font name Default: Courier
ScreenDepth	Depth of the display bitmap	Values: bits per pixel
ScreenSi ze	Size of the screen	Values: [left, bottom, width, height]
General Information Abo	out Root Objects	
Children	Handles of all nonhidden Figue objects	Values: vector of handles
Parent	The root object has no parent	Value: [] (empty matrix)
Selected	This property is not used by the root object.	
Tag	User-specified label	Value: any string Default: '' (empty string)
Туре	The type of graphics object (read only)	Value: the string ' root '
UserData	User-specified data	Values: any matrix Default: [] (empty matrix)

Root Properties

Modifying Yo Properties

You can set and query graphics object properties in two ways:

- The Property Editor is an interactive tool that enables you to see and change object property values.
- The set and get commands enable you to set and query the values of properties

To change the default value of properties see Setting Default Property Values.

Root Properties This section lists property names along with the type of values each accepts. Curly braces { } enclose default values.

BusyAction cancel | {queue}

Not used by the root object.

ButtonDownFcn string

Not used by the root object.

Callback0bject handle (read only)

Handle of current callback's object. This property contains the handle of the object whose callback routine is currently executing. If no callback routines are executing, this property contains the empty matrix []. See also the gco command.

CaptureMatrix (obsolete)

This property has been superseded by the getframe command.

CaptureRect (obsolete)

This property has been superseded by the getframe command.

Children vector of handles

Handles of child objects. A vector containing the handles of all nonhidden figure objects. You can change the order of the handles and thereby change the stacking order of the figures on the display.

Clipping {on} | off

Clipping has no effect on the root object.

CreateFcn

The root does not use this property.

CurrentFigure figure handle

Handle of the current figure window, which is the one most recently created, clicked in, or made current with the statement:

figure(h)

which restacks the figure to the top of the screen, or

set(0, 'CurrentFigure', h)

which does not restack the figures. In these statements, h is the handle of an existing figure. If there are no figure objects,

get(0, 'CurrentFigure')

returns the empty matrix. Note, however, that gcf always returns a figure handle, and creates one if there are no figure objects.

DeleteFcn string

This property is not used since you cannot delete the root object

Diary on $| \{ off \}$

Diary file mode. When this property is on, MATLAB maintains a file (whose name is specified by the Di aryFile property) that saves a copy of all keyboard input and most of the resulting output. See also the di ary command.

DiaryFile string

Diary filename. The name of the diary file. The default name is di ary.

Echo on $| \{ off \}$

Script echoing mode. When Echo is on, MATLAB displays each line of a script file as it executes. See also the echo command.

ErrorMessage string

Text of last error message. This property contains the last error message issued by MATLAB.

FixedWidthFontName font name

Fixed-width font to use for axes, text, and uicontrols whose FontName is set to FixedWidth. MATLAB uses the font name specified for this property as the value for axes, text, and uicontrol FontName properties when their FontName property is set to FixedWidth. Specifying the font name with this property eliminates the need to hardcode font names in MATLAB applications and thereby enables these applications to run without modification in locales where non-ASCII character sets are required. In these cases, MATLAB attempts to set the value of Fi xedWi dthFontName to the correct value for a given locale.

MATLAB application developers should not change this property, but should create axes, text, and uicontrols with FontName properties set to Fi xedWi dth when they want to use a fixed width font for these objects.

MATLAB end users can set this property if they do not want to use the preselected value. In locales where Latin-based characters are used, Courier is the default.

Format short | {shortE} | long | longE | bank | hex | + | rat

Output format mode. This property sets the format used to display numbers. See also the format command.

- short Fixed-point format with 5 digits.
- shortE Floating-point format with 5 digits.
- shortG Fixed- or floating-point format displaying as many significant figures as possible with 5 digits.
- long Scaled fixed-point format with 15 digits.
- longE Floating-point format with 15 digits.
- longG Fixed- or floating-point format displaying as many significant figures as possible with 15 digits.
- bank Fixed-format of dollars and cents.
- hex Hexadecimal format.
- + Displays + and symbols.
- rat Approximation by ratio of small integers.

FormatSpacing compact | {loose}

Output format spacing (see also format command).

- compact Suppress extra line feeds for more compact display.
- loose Display extra line feeds for a more readable display.

HandleVisibility {on} | callback | off

This property is not useful on the root object.

HitTest {on} | off

This property is not useful on the root object.

Interruptible {on} | off

This property is not useful on the root object.

Language string

System environment setting.

Parent handle

Handle of parent object. This property always contains the empty matrix, as the root object has no parent.

PointerLocation [x, y]

Current location of pointer. A vector containing the *x*- and *y*-coordinates of the pointer position, measured from the lower-left corner of the screen. You can move the pointer by changing the values of this property. The Units property determines the units of this measurement.

This property always contains the instantaneous pointer location, even if the pointer is not in a MATLAB window. A callback routine querying the PointerLocation can get a different value than the location of the pointer when the callback was triggered. This difference results from delays in callback execution caused by competition for system resources.

PointerWindow handle (read only)

Handle of window containing the pointer. MATLAB sets this property to the handle of the figure window containing the pointer. If the pointer is not in a MATLAB window, the value of this property is 0. A callback routine querying the PointerWindow can get the wrong window handle if you move the pointer to another window before the callback executes. This error results from delays in callback execution caused by competition for system resources.

RecursionLimit integer

Number of nested M-file calls. This property sets a limit to the number of nested calls to M-files MATLAB will make before stopping (or potentially running out of memory). By default the value is set to a large value. Setting this

property to a smaller value (something like 150, for example) should prevent MATLAB from running out of memory and will instead cause MATLAB to issue an error when the limit is reached.

ScreenDepth bits per pixel

Screen depth. The depth of the display bitmap (i.e., the number of bits per pixel). The maximum number of simultaneously displayed colors on the current graphics device is 2 raised to this power.

ScreenDepth supersedes the Bl ackAndWhi te property. To override automatic hardware checking, set this property to 1. This value causes MATLAB to assume the display is monochrome. This is useful if MATLAB is running on color hardware but is displaying on a monochrome terminal. Such a situation can cause MATLAB to determine erroneously that the display is color.

ScreenSize 4-element rectangle vector (read only)

Screen size. A four-element vector,

[left, bottom, width, height]

that defines the display size. left and bottom are 0 for all Units except pixels, in which case left and bottom are 1. width and height are the screen dimensions in units specified by the Units property.

Selected on | off

This property has no effect on the root level.

SelectionHighlight {on} | off

This property has no effect on the root level.

ShowHiddenHandles on | {off}

Show or hide handles marked as hidden. When set to on, this property disables handle hiding and exposes all object handles, regardless of the setting of an object's Handl eVi si bility property. When set to off, all objects so marked remain hidden within the graphics hierarchy.

Tag string

User-specified object label. The Tag property provides a means to identify graphics objects with a user-specified label. While it is not necessary to identify the root object with a tag (since its handle is always 0), you can use this property to store any string value that you can later retrieve using set.

Typestring (read only)

Class of graphics object. For the root object, Type is always 'root'.

UIContextMenu handle

This property has no effect on the root level.

Units {pixels} | normalized | inches | centimeters | points | characters

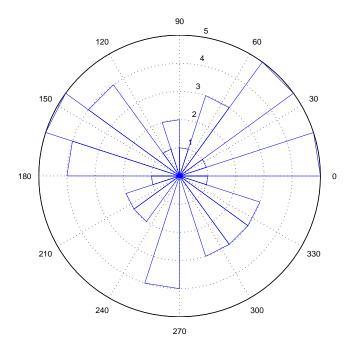
Unit of measurement. This property specifies the units MATLAB uses to interpret size and location data. All units are measured from the lower-left corner of the screen. Normalized units map the lower-left corner of the screen to (0,0) and the upper right corner to (1.0,1.0). inches, centimeters, and points are absolute units (one point equals 1/72 of an inch). Characters are units defined by characters from the default system font; the width of one unit is the width of the letter x, the height of one character is the distance between the baselines of two lines of text.

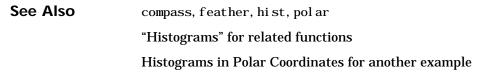
This property affects the PointerLocation and ScreenSize properties. If you change the value of Units, it is good practice to return it to its default value after completing your operation so as not to affect other functions that assume Units is set to the default value.

UserData matrix

User specified data. This property can be any data you want to associate with the root object. MATLAB does not use this property, but you can access it using the set and get functions.

Visible {on} | off


Object visibility. This property has no effect on the root object.


roots

Purpose	Polynomial roots			
Syntax	r = roots(c)			
Description	r = roots(c) returns a column vector whose elements are the roots of the polynomial c.			
	Row vector c contains the coefficients of a polynomial, ordered in descending powers. If c has n+1 components, the polynomial it represents is $c_1s^n + \ldots + c_ns + c_{n+1}$.			
Remarks	Note the relationship of this function to $p = poly(r)$, which returns a row vector whose elements are the coefficients of the polynomial. For vectors, roots and poly are inverse functions of each other, up to ordering, scaling, and roundoff error.			
Examples	The polynomial $s^3 - 6s^2 - 72s - 27$ is represented in MATLAB as			
	p = [1 - 6 - 72 - 27]			
	The roots of this polynomial are returned in a column vector by			
	r = roots(p)			
	r = 12.1229			
	- 5. 7345			
	- 0. 3884			
Algorithm	The algorithm simply involves computing the eigenvalues of the companion matrix:			
	A = di ag(ones(n-2, 1), -1); A(1, :) = -c(2: n-1). /c(1); ei g(A)			
	It is possible to prove that the results produced are the exact eigenvalues of a matrix within roundoff error of the companion matrix A, but this does not mean that they are the exact roots of a polynomial with coefficients within roundoff error of those in c .			

See Also fzero, poly, residue

Purpose	Angle histogram		
Syntax	<pre>rose(theta) rose(theta, x) rose(theta, nbi ns) [tout, rout] = rose()</pre>		
Description	rose creates an angle histogram, which is a polar plot showing the distribution of values grouped according to their numeric range. Each group is shown as one bin.		
	rose(theta) plots an angle histogram showing the distribution of theta in 20 angle bins or less. The vector theta, expressed in radians, determines the angle from the origin of each bin. The length of each bin reflects the number of elements in theta that fall within a group, which ranges from 0 to the greatest number of elements deposited in any one bin.		
	rose(theta, x) uses the vector x to specify the number and the locations of bins. $l ength(x)$ is the number of bins and the values of x specify the center angle of each bin. For example, if x is a five-element vector, rose distributes the elements of theta in five bins centered at the specified x values.		
	rose(theta, nbins) plots nbins equally spaced bins in the range [0, 2*pi]. The default is 20.		
	[tout, rout] = rose() returns the vectors tout and rout so pol ar(tout, rout) generates the histogram for the data. This syntax does not generate a plot.		
Example	Create a rose plot showing the distribution of 50 random numbers. theta = 2*pi *rand(1, 50); rose(theta)		

rosser

Purpose	Classic symmetric eigenvalue test problem						
Syntax	A = rosser						
Description	 A = rosser returns the Rosser matrix. This matrix was a challenge for many matrix eigenvalue algorithms. But LAPACK's DSYEV routine used in MATLAB has no trouble with it. The matrix is 8-by-8 with integer elements. It has: A double eigenvalue Three nearly equal eigenvalues Dominant eigenvalues of opposite sign A zero eigenvalue A small, nonzero eigenvalue 						
Examples	rosser						
	ans =						
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
	-192 113 899 196 61 49 8 52						
	407 - 192 196 611 8 44 59 - 23						
	-8 -71 61 8 411 -599 208 208						
	-52 -43 49 44 -599 411 208 208						

99

99

- 911

- 49

29

- 8

- 44

8

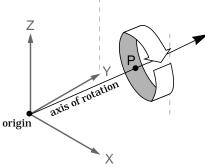
52

59

- 23

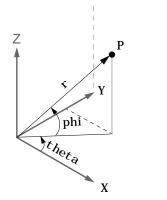
208

208


208

208 - 911

Purpose	Rotate matrix 90°				
Syntax	B = rot90(A) B = rot90(A, k)				
Description	 B = rot90(A) rotates matrix A counterclockwise by 90 degrees. B = rot90(A, k) rotates matrix A counterclockwise by k*90 degrees, where k is an integer. 				
Examples	The matrix X = 1 2 3 4 5 6 7 8 9				
	Y = 8 = 9 rotated by 90 degrees is Y = rot 90(X) Y = $3 = 6 = 9$ $2 = 5 = 8$ $1 = 4 = 7$				
See Also	flipdim, fliplr, flipud				


rotate

Purpose	Rotate object about a specified direction			
Syntax	rotate(h, di recti on, al pha) rotate(, ori gi n)			
Description	The rotate function rotates a graphics object in three-dimensional space, according to the right-hand rule.			
	rotate(h, direction, al pha) rotates the graphics object h by al pha degrees. direction is a two- or three-element vector that describes the axis of rotation in conjunction with the origin.			
	$rotate(\ldots, origin)$ specifies the origin of the axis of rotation as a three-element vector. The default origin is the center of the plot box.			
Remarks	The graphics object you want rotated must be a child of the same axes. The object's data is modified by the rotation transformation. This is in contrast to vi ew and rotate3d, which only modify the viewpoint.			
	The axis of rotation is defined by an origin and a point P relative to the origin. P is expressed as the spherical coordinates [theta phi], or as Cartesian coordinates.			

The two-element form for direction specifies the axis direction using the spherical coordinates [theta phi]. theta is the angle in the *xy* plane

counterclockwise from the positive *x*-axis. phi is the elevation of the direction vector from the *xy* plane.

The three-element form for di recti on specifies the axis direction using Cartesian coordinates. The direction vector is the vector from the origin to (X,Y,Z).

Examples Rotate a graphics object 180° about the *x*-axis. h = surf(peaks(20));rotate(h, [1 0 0], 180) Rotate a surface graphics object 45° about its center in the *z* direction. h = surf(peaks(20)); $zdir = [0 \ 0 \ 1];$ center = $[10 \ 10 \ 0];$ rotate(h, zdir, 45, center) Remarks rotate changes the Xdata, Ydata, and Zdata properties of the appropriate graphics object. See Also rotate3d, sph2cart, view The axes CameraPosition, CameraTarget, CameraUpVector, CameraViewAngle "Object Manipulation" for related functions

rotate3d

Purpose	Rotate 3-D view using mouse			
Syntax	rotate3d on rotate3d off rotate3d rotate3d(figure_handle,) rotate3d(axes_handle,)			
Description	rotate3d on enables mouse-base rotation on all axes within the current figure.			
	rotate3d off disables interactive axes rotation in the current figure.			
	rotate3d toggles interactive axes rotation in the current figure.			
	$rotate3d(figure_handle,)$ enables rotation within the specified figure instead of the current figure.			
	$rotate3d(axes_handle,)$ enables rotation only in the specified axes.			
	Using rotate3d When enabled, clicking on an axes draws an animated box, which rotates as the mouse is dragged, showing the view that will result when the mouse button is released. A numeric readout appears in the lower-left corner of the figure during rotation, showing the current azimuth and elevation of the animated box. Releasing the mouse button removes the animated box and the readout, and changes the view of the axes to correspond to the last orientation of the animated box.			
See Also	camorbit, rotate, view			
	Object Manipulation for related functions.			

round

Purpose	Round to nearest integer				
Syntax	Y = round(X)				
Description	Y = round(X) rounds the elements of X to the nearest integers. For complex X, the imaginary and real parts are rounded independently.				
Examples	a = [-1.9, -0.2, 3.4, 5.6, 7.0, 2.4+3.6i]				
	a = Columns 1 through 4 -1.9000 -0.2000 3.4000 5.6000 Columns 5 through 6 7.0000 2.4000 + 3.6000i round(a)				
	ans = Columns 1 through 4 -2.0000 0 3.0000 6.0000 Columns 5 through 6 7.0000 2.0000 + 4.0000i				
See Also	ceil, fix, floor				

rref

Purpose	Reduced row echelon form				
Syntax	R = rref(A) [R,jb] = rref(A) [R,jb] = rref(A,tol)				
Description	<pre>R = rref(A) produces the reduced row echelon form of A using Gauss Jordan elimination with partial pivoting. A default tolerance of (max(size(A))*eps *norm(A, inf)) tests for negligible column elements.</pre>				
	<pre>[R, j b] = rref(A) also returns a vector j b such that:</pre>				
	 r = l ength(j b) is this algorithm's idea of the rank of A. x(j b) are the pivot variables in a linear system Ax = b. A(:, j b) is a basis for the range of A. R(1: r, j b) is the r-by-r identity matrix. 				
	[R, jb] = rref(A, tol) uses the given tolerance in the rank tests.				
	Roundoff errors may cause this algorithm to compute a different value for the rank than rank, orth and null.				
Note The demo rrefmovie(A) enables you to sequence through the iterations of the algorithm.					
Examples	Use rref on a rank-deficient magic square: A = magic(4), R = rref(A)				
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$				

R =	=			
	1	0	0	1
	0	1	0	3
	0	0	1	- 3
	0	0	0	0

See Also

inv, lu, rank

rsf2csf

Purpose	Convert real Schur form to complex Schur form					
Syntax	[U, T] = rsf2csf(U, T)					
Description	The <i>complex Schur form</i> of a matrix is upper triangular with the eigenvalues of the matrix on the diagonal. The <i>real Schur form</i> has the real eigenvalues on the diagonal and the complex eigenvalues in 2-by-2 blocks on the diagonal. [U, T] = rsf2csf(U, T) converts the real Schur form to the complex form.					
	Arguments U and T represent the unitary and Schur forms of a matrix A, respectively, that satisfy the relationships: $A = U^*T^*U'$ and $U'^*U = eye(si ze(A))$. See schur for details.					
Examples	Given matrix A,					
	1 1 1 3					
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
	1 1 3 1					
	-2 1 1 4					
	with the eigenvalues					
	4. 8121 1. 9202 + 1. 4742i 1. 9202 + 1. 4742i 1. 3474					
	Generating the Schur form of A and converting to the complex Schur form					
	[u, t] = schur(A); [U, T] = rsf2csf(u, t)					
	vielde e trienguler metrix Typhere diagonal (underlined here for readeril)					

yields a triangular matrix T whose diagonal (underlined here for readability) consists of the eigenvalues of A.

U =

- 0. 4916	-0.2756 - 0.4411i	0. 2133 + 0. 5699i	- 0. 3428
- 0. 4980	-0.1012 + 0.2163i	-0. 1046 + 0. 2093i	0.8001
- 0. 6751	0.1842 + 0.3860i	-0. 1867 - 0. 3808i	-0.4260
- 0. 2337	0. 2635 - 0. 6481i	0. 3134 - 0. 5448i	0.2466

	T =			
	<u>4. 8121</u>	-0.9697 + 1.0778i	-0.5212 + 2.0051i	- 1. 0067
	0	<u>1. 9202 + 1. 4742i</u>	2. 3355	0. 1117 + 1. 6547i
	0	0	<u>1. 9202 - 1. 4742i</u>	0. 8002 + 0. 2310i
	0	0	0	<u>1. 3474</u>
See Also	schur			

run

Purpose	Run a script
Syntax	run scriptname
Description	run scriptname runs the MATLAB script specified by scriptname. If scriptname contains the full pathname to the script file, then run changes the current directory to be the one in which the script file resides, executes the script, and sets the current directory back to what it was. The script is run within the caller's workspace.
	run is a convenience function that runs scripts that are not currently on the path. Typically, you just type the name of a script at the MATLAB prompt to execute it. This works when the script is on your path. Use the cd or addpath function to make a script executable by entering the script name alone.
See Also	cd, addpath

Purpose	Emulate the runtime environment in MATLAB and set the global error mode
Syntax	runtime on runtime off runtime status runtime errormode <i>mode</i>
Description	The runt i me command lets you emulate the Runtime Server environment in commercial MATLAB and set the global error mode for a runtime application. Because the Runtime Server disables the command window, it is generally much more convenient to test and debug with MATLAB emulating the Runtime Server than with the Runtime Server variant itself.
	runti me on tells commercial MATLAB to begin emulating the Runtime Server. This means that MATLAB executes neither M-files nor standard P-files. The command line remains accessible.
	runtime off returns MATLAB to its ordinary state.
	${\tt runtime}\ {\tt status}\ {\tt indicates}\ {\tt whether}\ {\tt MATLAB}\ {\tt is}\ {\tt emulating}\ {\tt the}\ {\tt Runtime}\ {\tt Server}\ {\tt or}\ {\tt not}.$
	runtime errormode <i>mode</i> sets the global error mode to <i>mode</i> . The value of <i>mode</i> can be either continue, quit, or di al og. However, di al og is both the default error mode and the recommended one.
	The error mode setting is only effective when the application runs with the Runtime Server; when the application runs with commercial MATLAB emulating the Runtime Server, untrapped errors are always displayed in the command window.
See Also	isruntime

save

Purpose	Save workspace variables on disk	
Graphical Interface	As an alternative to the save func- menu in the MATLAB desktop, o	tion, select Save Workspace As from the File r use the Workspace browser.
Syntax	<pre>save save filename save filename var1 var2 save option save('filename',)</pre>	
Description	save by itself, stores all workspace variables in a binary format in the current directory in a file named matl ab. mat. Retrieve the data with l oad. MAT-files are double-precision, binary, MATLAB format files. They can be created on one machine and later read by MATLAB on another machine with a different floating-point format, retaining as much accuracy and range as the different formats allow. They can also be manipulated by other programs external to MATLAB.	
	filename. mat. To save to another	ace variables in the current directory in r directory, use the full pathname for the al string st di o, the save command sends the
	in filename. mat. Use the * wildc	aves only the specified workspace variables ard to save only those variables that match e, save('A*') saves all variables that start
	save option saves the work option	space variables in the format specified by
	option Argument	Result: How Data is Stored
	- append	The specified existed MAT-file, appended to the end
	- asci i	8-digit ASCII format

option Argument	Result: How Data is Stored
- asci i - doubl e	16-digit ASCII format
-ascii -tabs	delimits with tabs
-ascii -double -tabs	16-digit ASCII format, tab delimited
-mat	Binary MAT-file form (default)
- v4	A format that MATLAB version 4 can open

Remarks

When saving in ASCII format, consider the following:

- Each variable to be saved must be either a two dimensional double array or a two dimensional character array. Saving a complex double array causes the imaginary part of the data to be lost, as MATLAB cannot load nonnumeric data (' i ').
- In order to be able to read the file with the MATLAB l oad function, all of the variables must have the same number of columns. If you are using a program other than MATLAB to read the saved data this restriction can be relaxed.
- Each MATLAB character in a character array is converted to a floating point number equal to its internal ASCII code and written out as a floating point number string. There is no information in the save file that indicates whether the value was originally a number or a character.
- The values of all variables saved merge into a single variable that takes the name of the ASCII file (minus any extension). Therefore, it is advisable to save only one variable at a time.

With the v4 flag, you can only save data constructs that are compatible with versions of MATLAB 4. Therefore, you cannot save structures, cell arrays, multidimensional arrays, or objects. In addition, you must use filenames that are supported by MATLAB version 4.

save('filename', \dots) is the function form of the syntax.

For more control over the format of the file, MATLAB provides other functions, as listed in "See Also", below.

Algorithm The binary formats used by save depend on the size and type of each array. Arrays with any noninteger entries and arrays with 10,000 or fewer elements are saved in floating-point formats requiring 8 bytes per real element. Arrays with all integer entries and more than 10,000 elements are saved in the formats shown, requiring fewer bytes per element.

Element Range	Bytes per Element
0 to 255	1
0 to 65535	2
-32767 to 32767	2
$-2^{31}+1$ to $2^{31}-1$	4
other	8

External Interfaces to MATLAB provides details on reading and writing MAT-files from external C or Fortran programs. It is important to use recommended access methods, rather than rely upon the specific MAT-file format, which is likely to change in the future.

Examples To save all variables from the workspace in binary MAT-file, test. mat, type

save test.mat

To save variables p and q in binary MAT-file, test. mat, type

```
savefile = 'test.mat';
p = rand(1, 10);
q = ones(10);
save(savefile, 'p', 'q')
```

To save the variables vol and temp in ASCII format to a file named j une10, type

```
save('d:\mymfiles\june10', 'vol', 'temp', '-ASCII')
```

See Also diary, fprintf, fwrite, load, workspace

Purpose	Serialize a COM control object to a file
Syntax	<pre>save(h, 'filename')</pre>
Arguments	h Handle for a MATLAB COM control object. filename The full path and filename of the serialized data.
Description	Save the COM control object associated with the interface represented by the MATLAB COM object h into a file.
	The COM save function is only supported for controls at this time.
Examples	<pre>Create an mwsamp control and save its original state to the file mwsampl e: f = figure('pos', [100 200 200 200]); h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], f); save(h, 'mwsample')</pre>
	Now, alter the figure by changing its label and the radius of the circle: set(h, 'Label', 'Circle'); set(h, 'Radius', 50); Redraw(h);
	Using the load function, you can restore the control to its original state:
	load(h, 'mwsample'); get(h) ans = Label: 'Label' Radius: 20
See Also	load, actxcontrol, actxserver, release, delete

save (serial)

Purpose	Save serial port objects and variables to a MAT-file	
Syntax	save filename save filename obj1 obj2	
Arguments	filename	The MAT-file name.
	obj 1 obj 2	Serial port objects or arrays of serial port objects.
Description	save filename saves all MATLAB variables to the MAT-file filename. If an extension is not specified for filename, then the .mat extension is used.	
	save filename obj MAT-file filename.	1 obj 2 saves the serial port objects obj 1 obj 2 to the
Remarks	You can use save in the functional form as well as the command form shown above. When using the functional form, you must specify the filename and serial port objects as strings. For example. to save the serial port object s to the file MySeri al. mat	
	s = serial('CO save('MySerial	
	stored in the MAT-f for obj . To save tha workspace using on	sociated with the serial port object is not automatically file. For example, suppose there is data in the input buffer t data to a MAT-file, you must bring it into the MATLAB e of the synchronous read functions, and then save to the parate variable name. You can also save data to a text file action.
	command. Values fo upon loading. For ex	and variables to the MATLAB workspace with the load or read-only properties are restored to their default values xample, the Status property is restored to closed. To erty is read-only, examine its reference pages.
	If you use the hel p of the pathname show	command to display help for save, then you need to supply n below.
	help serial/pr	ivate/save
Example	This example illust	rates how to use the command and functional form of save.

```
s = serial('COM1');
set(s, 'BaudRate', 2400, 'StopBits', 1)
save MySerial1 s
set(s, 'BytesAvailableFcn',@mycallback)
save('MySerial2', 's')
```

See Also Functions

load, record

Properties Status

saveas

Purpose	Save figure or model using specified format
Syntax	<pre>saveas(h, 'filename.ext') saveas(h, 'filename', 'format')</pre>
Description	saveas(h, 'filename.ext') saves the figure or 1

Descriptionsaveas(h, 'filename.ext') saves the figure or model with the handle h to the
file filename.ext. The format of the file is determined by the extension, ext.
Allowable values for ext are listed in this table.

ext Values	Format
ai	Adobe Illustrator '88
bmp	Windows bitmap
emf	Enhanced metafile
eps	EPS Level 1
fig	MATLAB figure (invalid for MATLAB models)
j pg	JPEG image (invalid for MATLAB models)
m	MATLAB M-file (invalid for MATLAB models)
pbm	Portable bitmap
рсх	Paintbrush 24-bit
pgm	Portable Graymap
png	Portable Network Graphics
ppm	Portable Pixmap
tif	TIFF image, compressed

saveas(h, 'filename', 'format') saves the figure or model with the handle h to the file called filename using the specified format. The filename can have an extension but the extension is not used to define the file format. If no extension is specified, the standard extension corresponding to the specified format is automatically appended to the filename.

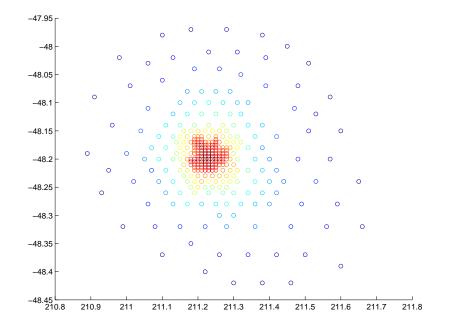
	Allowable values for format are the extensions in the table above and the device types supported by print. The print device types include the formats listed in the table of extensions above as well as additional file formats. Use an extension from the table above or from the list of device types supported by print. When using the print device type to specify format for saveas, do not use the prepended - d.
Remarks	You can use open to open files saved using saveas with an m or fig extension. Other formats are not supported by open. The Save As dialog box you access from the figure window's File menu uses saveas, limiting the file extensions to m and fig. The Export dialog box you access from the figure window's File menu uses saveas with the format argument.
Examples	Example 1 – Specify File Extension
	Save the current figure that you annotated using the Plot Editor to a file named pred_prey using the MATLAB fig format. This allows you to open the file pred_prey. fig at a later time and continue editing it with the Plot Editor.
	<pre>saveas(gcf, 'pred_prey.fig')</pre>
	Example 2 – Specify File Format but No Extension
	Save the current figure, using Adobe Illustrator format, to the file \log_0 . Use the ai extension from the above table to specify the format. The file created is \log_0 . ai .

saveas(gcf, 'logo', 'ai')

This is the same as using the Adobe Illustrator format from the print devices table, which is - dill; use doc print or help print to see the table for print device types. The file created is logo. ai. MATLAB automatically appends the ai extension, for an Illustrator format file, because no extension was specified.

```
saveas(gcf, 'logo', 'ill')
```

Example 3 – Specify File Format and Extension


Save the current figure to the file star. eps using the Level 2 Color PostScript format. If you use doc print or help print, you can see from the table for print device types that the device type for this format is - dpsc2. The file created is star. eps.

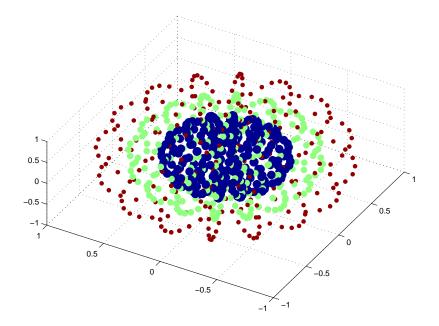
```
saveas(gcf, 'star.eps', 'psc2')
In another example, save the current model to the file trans. tiff using the
TIFF format with no compression. From the table for print device types, you
can see the device type for this format is - dtiffn. The file created is
trans. tiff.
saveas(gcf, 'trans.tiff', 'tiffn')
See Also
open, print
"Printing" for related functions
```

Purpose	Save an object to a MAT-file
Syntax	B = saveobj(A)
Description	B = saveobj (A) is called by the MATLAB save function when object, A, is saved to a .MAT file. This call executes the saveobj method for the object's class, if such a method exists. The return value B is subsequently used by save to populate the .MAT file.
	When you issue a save command on an object, MATLAB looks for a method called saveobj in the class directory. You can overload this method to modify the object before the save operation. For example, you could define a saveobj method that saves related data along with the object.
Remarks	saveobj can be overloaded only for user objects. save will not call saveobj for a built-in datatype, such as doubl e, even if @doubl e/saveobj exists.
	saveobj will be separately invoked for each object to be saved.
	A child object does not inherit the saveobj method of its parent class. To implement saveobj for any class, including a class that inherits from a parent, you must define a saveobj method within that class directory.
Examples	The following example shows a saveobj method written for the portfolio class. The method determines if a portfolio object has already been assigned an account number from a previous save operation. If not, saveobj calls getAccountNumber to obtain the number and assigns it to the account_number field. The contents of b is saved to the MAT-file.
	<pre>function b = saveobj(a) if isempty(a.account_number)</pre>
See Also	save, l oad, l oadobj

scatter

Purpose	2-D Scatter plot
Syntax	<pre>scatter(X, Y, S, C) scatter(X, Y) scatter(X, Y, S) scatter(, markertype) scatter(, 'filled') h = scatter(,)</pre>
Description	scatter(X, Y, S, C) displays colored circles at the locations specified by the vectors X and Y (which must be the same size).
	S determines the area of each marker (specified in points^2). S can be a vector the same length as X and Y or a scalar. If S is a scalar, MATLAB draws all the markers the same size.
	C determines the colors of each marker. When C is a vector the same length as X and Y, the values in C are linearly mapped to the colors in the current colormap. When C is a $l ength(X)$ -by-3 matrix, it specifies the colors of the markers as RGB values. C can also be a color string (see Col or Spec for a list of color string specifiers)
	scatter(X, Y) draws the markers in the default size and color.
	$\operatorname{scatter}(X,Y,S)$ draws the markers at the specified sizes (S) with a single color.
	scatter(, markertype) uses the marker type specified instead of 'o' (see Li neSpec for a list of marker specifiers).
	scatter(, 'filled') fills the markers.
	h = scatter() returns the handles to the line objects created by scatter (see line for a list of properties you can specify using the object handles and set).
Remarks	Use pl ot for single color, single marker size scatter plots.
Examples	load seamount scatter(x, y, 5, z)

See Also


scatter3, plot, plotmatrix

"Specialized Plotting" for related functions

scatter3

Purpose	3-D scatter plot
Syntax	<pre>scatter3(X, Y, Z, S, C) scatter3(X, Y, Z) scatter3(X, Y, Z, S) scatter3(, markertype) scatter3(, 'filled') h = scatter3(,)</pre>
Description	scatter3(X, Y, Z, S, C) displays colored circles at the locations specified by the vectors X, Y, and Z (which must all be the same size).
	S determines the size of each marker (specified in points). S can be a vector the same length as X, Y, and Z or a scalar. If S is a scalar, MATLAB draws all the markers the same size.
	C determines the colors of each marker. When C is a vector the same length as X, Y, and Z, the values in C are linearly mapped to the colors in the current colormap. When C is a $l ength(X) - by-3$ matrix, it specifies the colors of the markers as RGB values. C can also be a color string (see Col or Spec for a list of color string specifiers)
	scatter3(X, Y, Z) draws the markers in the default size and color.
	scatter3(X, Y, Z, S) draws the markers at the specified sizes (S) with a single color.
	scatter3(, markertype) uses the marker type specified instead of 'o' (see Li neSpec for a list of marker specifiers).
	scatter3(, 'filled') fills the markers.
	h = scatter3() returns the handles to the line objects created by scatter3 (see l i ne for a list of properties you can specify using the object handles and set).
Remarks	Use pl ot 3 for single color, single marker size 3-D scatter plots.
Examples	<pre>[x, y, z] = sphere(16); X = [x(:)*.5 x(:)*.75 x(:)]; Y = [y(:)*.5 y(:)*.75 y(:)];</pre>

```
Z = [z(:)*.5 z(:)*.75 z(:)];
S = repmat([1 .75 .5]*10, prod(size(x)), 1);
C = repmat([1 2 3], prod(size(x)), 1);
scatter3(X(:), Y(:), Z(:), S(:), C(:), 'filled'), view(-60, 60)
```


See Also scatter, pl ot 3

"Scatter Plots" for related functions

schur

Purpose	Schur decom	position
Syntax	T = schur(A T = schur(A [U,T] = sch	a, flag)
Description	The schur co	ommand computes the Schur form of a matrix.
	T = schur(A)	a) returns the Schur matrix T.
		a, flag) for real matrix A, returns a Schur matrix T in one of two ding on the value of flag:
	' compl ex'	T is triangular and is complex if A has complex eigenvalues.
	' real '	T has the real eigenvalues on the diagonal and the complex eigenvalues in 2-by-2 blocks on the diagonal. ' real ' is the default.
	-	ex, schur returns the complex Schur form in matrix T. The complex s upper triangular with the eigenvalues of A on the diagonal.
	The function	rsf2csf converts the real Schur form to the complex Schur form.
		$ur(A,)$ also returns a unitary matrix U so that $A = U^*T^*U'$ eye(si ze(A)).
Examples	H is a 3-by-3	eigenvalue test matrix:
		49 - 50 - 154 37 180 546 27 - 9 - 25]
	Its Schur for	m is
	<pre>schur(H)</pre>	
	ans = 1.00	000 -7.1119 -815.8706 0 2.0000 -55.0236 0 0 3.0000

The eigenvalues, which in this case are 1, 2, and 3, are on the diagonal. The fact that the off-diagonal elements are so large indicates that this matrix has poorly conditioned eigenvalues; small changes in the matrix elements produce relatively large changes in its eigenvalues.

Algorithm

schur uses LAPACK routines to compute the Schur form of a matrix:

Matrix A	Routine
Real symmetric	DSYTRD, DSTEQR DSYTRD, DORGTR, DSTEQR (with output U)
Real nonsymmetric	DGEHRD, DHSEQR DGEHRD, DORGHR, DHSEQR (with output U)
Complex Hermitian	ZHETRD, ZSTEQR ZHETRD, ZUNGTR, ZSTEQR (with output U)
Non-Hermitian	ZGEHRD, ZHSEQR ZGEHRD, ZUNGHR, ZHSEQR (with output U)

See Also ei g, hess, qz, rsf2csf

References[1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
LAPACK User's Guide
(http://www.netlib.org/lapack/lug/lapack_lug.html), Third Edition,
SIAM, Philadelphia, 1999.

script

Purpose	Script M-files
Description	A script file is an external file that contains a sequence of MATLAB statements. By typing the filename, subsequent MATLAB input is obtained from the file. Script files have a filename extension of . m and are often called M-files.
	Scripts are the simplest kind of M-file. They are useful for automating blocks of MATLAB commands, such as computations you have to perform repeatedly from the command line. Scripts can operate on existing data in the workspace, or they can create new data on which to operate. Although scripts do not return output arguments, any variables that they create remain in the workspace so you can use them in further computations. In addition, scripts can produce graphical output using commands like pl ot.
	Scripts can contain any series of MATLAB statements. They require no declarations or begin/end delimiters.
	Like any M-file, scripts can contain comments. Any text following a percent sign (%) on a given line is comment text. Comments can appear on lines by themselves, or you can append them to the end of any executable line.
See Also	echo, function, type

Purpose	Secant		
Syntax	$Y = \sec(X)$		
Description	The sec function operates element-wise on arrays. The function's domains and ranges include complex values. All angles are in radians.		
	Y = sec(X) returns an array the same size as X containing the secant of the elements of X.		
Examples	Graph the secant over the domains $-\pi/2 < x < \pi/2$ and $\pi/2 < x < 3\pi/2$. x1 = -pi/2+0.01: 0.01: pi/2-0.01; x2 = pi/2+0.01: 0.01: (3*pi/2) - 0.01; plot(x1, sec(x1), x2, sec(x2)), grid on		
	-50		

The expression $\sec(\,\mathrm{pi}\,/2)\,$ does not evaluate as infinite but as the reciprocal of the floating-point accuracy eps, because pi is a floating-point approximation to the exact value of π .

3

4

5

2

1

Definition

The secant can be defined as

0

$$\sec(z) = \frac{1}{\cos(z)}$$

-1

-100

-150^L -2 Algorithm sec uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc. business, by Kwok C. Ng, and others. For information about FDLIBM, see http://www.netlib.org.

See Also asec, asech, eps, pi, sech

sech

Purpose	Hyperbolic secant		
Syntax	$Y = \operatorname{sech}(X)$		
Description	The sech function operates element-wise on arrays. The function's domains and ranges include complex values. All angles are in radians. Y = sech(X) returns an array the same size as X containing the hyperbolic secant of the elements of X.		
Examples	Graph the hyperbolic secant over the domain $-2\pi \le x \le 2\pi$. x = -2*pi: 0.01: 2*pi; plot(x, sech(x)), grid on $1 \longrightarrow (0.01) \longrightarrow $		
	$\begin{array}{c} 0.3 \\ 0.2 \\ 0.1 \\ 0.3 \\ 0.4 \\ 0.6 \\ -8 \\ -6 \\ -4 \\ -2 \\ 0 \\ 2 \\ 4 \\ 6 \\ 8 \end{array}$		
Algorithm	sech uses this algorithm.		
	$\operatorname{sech}(z) = \frac{1}{\cosh(z)}$		
Definition	The secant can be defined as $\operatorname{sech}(z) = \frac{1}{\cosh(z)}$		

Algorithmsec uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc.
business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

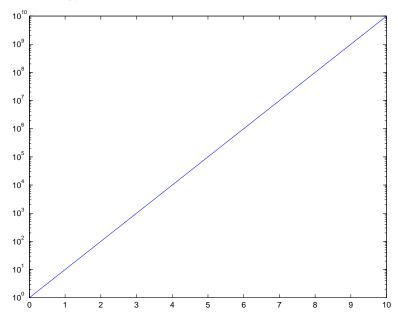
See Also asec, asech, sec

Purpose	Select, move, resize, or copy axes and uicontrol graphics objects		
Syntax	<pre>A = selectmoveresize; set(h, 'ButtonDownFcn', 'selectmoveresize')</pre>		
Description	sel ectmoveresi ze is useful as the callback routine for axes and uicontrol button down functions. When executed, it selects the object and allows you to move, resize, and copy it.		
	For example, this statement sets the ${\tt ButtonDownFcn}$ of the current axes to sel ectmoveresi ze:		
	<pre>set(gca, 'ButtonDownFcn', 'selectmoveresize')</pre>		
	A = sel ectmoveresi ze returns a structure array containing:		
	• A. Type: a string containing the action type, which can be Select, Move, Resize, or Copy.		
	• A. Handl es: a list of the selected handles or for a Copy an m-by-2 matrix containing the original handles in the first column and the new handles in the second column.		
See Also	The ButtonDownFcn of axes and uicontrol graphics objects		
	"Object Manipulation" for related functions		

semilogx, semilogy

Purpose	Semi-logarithmic plots		
Syntax	<pre>semilogx(Y) semilogx(X1, Y1,) semilogx(X1, Y1, LineSpec,) semilogx(, 'PropertyName', PropertyValue,) h = semilogx() semilogy()</pre>		
	h = semilogy()		
Description	semi l ogx and semi l ogy plot data as logarithmic scales for the x - and y -axis, respectively. logarithmic		
	semi $l ogx(Y)$ creates a plot using a base 10 logarithmic scale for the <i>x</i> -axis and a linear scale for the <i>y</i> -axis. It plots the columns of Y versus their index if Y contains real numbers. semi $l ogx(Y)$ is equivalent to semi $l ogx(real(Y),$ i mag(Y)) if Y contains complex numbers. semi $l ogx$ ignores the imaginary component in all other uses of this function.		
	semi $l ogx(X1, Y1,)$ plots all Xn versus Yn pairs. If only Xn or Yn is a matrix, semi $l ogx$ plots the vector argument versus the rows or columns of the matrix, depending on whether the vector's row or column dimension matches the matrix.		
	semi l ogx(X1, Y1, Li neSpec, \dots) plots all lines defined by the Xn, Yn, Li neSpec triples. Li neSpec determines line style, marker symbol, and color of the plotted lines.		
	semi logx(, ' <i>PropertyName</i> ', PropertyValue,) sets property values for all line graphics objects created by semi logx.		
	semi $\log()$ creates a plot using a base 10 logarithmic scale for the <i>y</i> -axis and a linear scale for the <i>x</i> -axis.		
	h = semi logx() and h = semi logy() return a vector of handles to line graphics objects, one handle per line.		

Remarks If you do not specify a color when plotting more than one line, semi l ogx and semi l ogy automatically cycle through the colors and line styles in the order specified by the current axes Col orOrder and Li neStyl eOrder properties.


You can mix Xn, Yn pairs with Xn, Yn, Li neSpec triples; for example,

semilogx(X1, Y1, X2, Y2, LineSpec, X3, Y3)

Examples

x = 0:.1:10; semilogy(x, 10.^x)

Create a simple semilogy plot.

See Also line, LineSpec, loglog, plot "Basic Plots and Graphs" for related functions

Purpose Return a list of events that the control can trigger

Note Support for send will be removed in a future release of MATLAB. Use the events function instead of send.

Purpose	Send e-mail message (attachments optional) to list of addresses		
Syntax	<pre>sendmail('recipients','subject','message','attachments')</pre>		
Description	sendmail ('recipients', 'subject', 'message', 'attachments') sends message to recipients with the specified subject. For recipients, use a string for a single address, or a cell array of strings for multiple addresses. Optionally specify attachments as a cell array of files to send along with message.		
	If MATLAB cannot read the SMTP mail server from your system registry, you get an error. You need to identify the outgoing SMTP mail server for your electronic mail application, which is usually listed in preferences. Or, consult your e-mail system administrator. Then provide the information to MATLAB using		
	<pre>setpref('Internet', 'SMTP_Server', 'myserver.myhost.com');</pre>		
Examples	Sample message:		
	sendmail('user@otherdomain.com','Test subject','Test message', {'directory/attach1.html','attach2.doc'});		

serial

Purpose	Create a serial port object		
Syntax	<pre>obj = serial('port') obj = serial('port', 'PropertyName', PropertyValue,)</pre>		
Arguments	'port'	The serial port name.	
	'PropertyName'	A serial port property name.	
	PropertyValue	A property value supported by <i>PropertyName</i> .	
	obj	The serial port object.	
Description	obj = seri al ('port') creates a serial port object associated with the serial port specified by port. If port does not exist, or if it is in use, you will not be able to connect the serial port object to the device.		
	port object with th	oort', ' <i>PropertyName</i> ', PropertyValue,) creates a serial ne specified property names and property values. If an invalid property value is specified, an error is returned and the serial created.	
Remarks	When you create a serial port object, these property values are automa configured:		
	• The Type property is given by seri al .		
	• The Name property is given by concatenating Serial with the point the serial function.		
	• The Port property is given by the port specified in the serial function.		
	supported by the name/property va names without re	he property names and property values using any format set function. For example, you can use property lue cell array pairs. Additionally, you can specify property gard to case, and you can make use of property name xample, the following commands are all valid.	
	s = serial('(COM1', 'BaudRate', 4800); COM1', 'baudrate', 4800); COM1' 'BAUD' 4800);	

s = serial ('COM1', 'BAUD', 4800);

	Refer to "Configuring Property Values" for a list of serial port object proper that you can use with seri al. Before you can communicate with the device, it must be connected to object the fopen function. A connected serial port object has a Status property va of open. An error is returned if you attempt a read or write operation while object is not connected to the device. You can connect only one serial port of to a given serial port.		
Example	This example creates the serial port object $s1$ associated with the serial port COM1.		
	s1 = serial('COM1');		
	The Type, Name, and Port properties are automatically configured.		
	get(s1,{'Type','Name','Port'}) ans = 'serial' 'Serial-COM1' 'COM1'		
	To specify properties during object creation		
	s2 = serial ('COM2', 'BaudRate', 1200, 'DataBits', 7);		
See Also	Functions		
	fclose, fopen		
	Properties Name, Port, Status, Type		

serialbreak

Purpose	Send a break to the device connected to the serial port		
Syntax	serial break(obj) serial break(obj,time)		
Arguments	obj	A serial port object.	
	time	The duration of the break, in milliseconds.	
Description	${\it seri} \ al \ break(obj) \ sends \ a \ break \ of 10 \ milliseconds \ to \ the \ device \ connected \ to \ obj$.		
	seri al break(obj , time) sends a break to the device with a duration, in milliseconds, specified by time. Note that the duration of the break might be inaccurate under some operating systems.		
Remarks	For some devi	ces, the break signal provides a way to clear the hardware buffer.	
	Before you can send a break to the device, it must be connected to obj with the fopen function. A connected serial port object has a Status property value of open. An error is returned if you attempt to send a break while obj is not connected to the device.		
	seri al break is a synchronous function, and blocks the command line execution is complete.		
	If you issue seri al break while data is being asynchronously written, an error is returned. In this case, you must call the stopasync function or wait for the write operation to complete.		
See Also	e Also Functions		
	fopen, stopasync		
	Properties		
	Status		

Purpose	Set object properties
Syntax	<pre>set(H, 'PropertyName', PropertyValue,) set(H, a) set(H, pn, pv) set(H, pn, <m-by-n array="" cell="">) a= set(h) a= set(0, 'Factory') a= set(0, 'FactoryObj ectTypePropertyName') a= set(h, 'Default') a= set(h, 'DefaultObj ectTypePropertyName') <cell array=""> = set(h, 'PropertyName')</cell></m-by-n></pre>
Description	 set (H, '<i>PropertyName</i>', PropertyValue,) sets the named properties to the specified values on the object(s) identified by H. H can be a vector of handles, in which case set sets the properties' values for all the objects. set (H, a) sets the named properties to the specified values on the object(s) identified by H. a is a structure array whose field names are the object property names and whose field values are the values of the corresponding properties. set (H, pn, pv,) sets the named properties specified in the cell array pn to the corresponding value in the cell array pv for all objects identified in H. set (H, pn, -m-by-n cell array) sets n property values on each of m graphics objects, where m = length(H) and n is equal to the number of property names contained in the cell array pn. This allows you to set a given group of properties to different values on each object. a = set (h) returns the user-settable properties and possible values for the object's property names and whose field values are the possible values of the corresponding properties. If you do not specify an output argument, MATLAB displays the information on the screen. h must be scalar. a = set(0, 'Factory') returns the properties whose defaults are user settable for all objects and lists possible values for each property. a is a structure array whose field names and whose field names are the object's property names and whose field names are the object's property names and whose field names are the object's property names and whose field names are the possible values of the corresponding properties. If you do not specify an output argument, MATLAB displays the information on the screen. h must be scalar.

set

	not specify an output argument, MATLAB displays the information on the screen.		
	a = set(0, 'Factory <i>Obj ectTypePropertyName</i> ') returns the possible values of the named property for the specified object type, if the values are strings. The argument Factory <i>Obj ectTypePropertyName</i> is the word Factory concatenated with the object type (e.g., axes) and the property name (e.g., CameraPosition).		
	a = set(h, 'Default') returns the names of properties having default values set on the object identified by h. set also returns the possible values if they are strings. h must be scalar.		
	a = set(h, 'Default0bjectTypePropertyName') returns the possible values of the named property for the specified object type, if the values are strings. The argument Default0bjectTypePropertyName is the word Default concatenated with the object type (e.g., axes) and the property name (e.g., CameraPosition). For example, DefaultAxesCameraPosition. h must be scalar.		
	pv = set(h, ' <i>PropertyName</i> ') returns the possible values for the named property. If the possible values are strings, set returns each in a cell of the cell array, pv. For other properties, set returns an empty cell array. If you do not specify an output argument, MATLAB displays the information on the screen. h must be scalar.		
Remarks	You can use any combination of property name/property value pairs, structure arrays, and cell arrays in one call to set.		
Examples	Set the Col or property of the current axes to blue.		
	set(gca, 'Color', 'b')		
	Change all the lines in a plot to black.		
	plot(peaks) set(findobj('Type','line'),'Color','k')		
	You can define a group of properties in a structure to better organize your code. For example, these statements define a structure called active, which contains a set of property definitions used for the uicontrol objects in a		

particular figure. When this figure becomes the current figure, MATLAB changes colors and enables the controls.

```
active. BackgroundCol or = [.7 .7 .7];
active. Enable = 'on';
active. ForegroundCol or = [0 0 0];
if gcf == control_fig_handle
   set(findobj(control_fig_handle,'Type','uicontrol'), active)
end
```

You can use cell arrays to set properties to different values on each object. For example, these statements define a cell array to set three properties,

```
PropName(1) = { 'BackgroundCol or' };
PropName(2) = { 'Enabl e' };
PropName(3) = { 'ForegroundCol or' };
```

These statements define a cell array containing three values for each of three objects (i.e., a 3-by-3 cell array).

```
PropVal (1, 1) = \{[.5.5.5]\};

PropVal (1, 2) = \{'off'\};

PropVal (1, 3) = \{[.9.9.9]\};

PropVal (2, 1) = \{[1 0 0]\};

PropVal (2, 2) = \{'on'\};

PropVal (2, 3) = \{[1 1 1]\};

PropVal (3, 1) = \{[.7.7.7]\};

PropVal (3, 2) = \{'on'\};

PropVal (3, 3) = \{[0 0 0]\};
```

Now pass the arguments to set,

```
set(H, PropName, PropVal)
```

where l ength(H) = 3 and each element is the handle to a uicontrol.

See Also findobj, gca, gcf, gco, gcbo, get

"Finding and Identifying Graphics Objects" for related functions

set (COM)

Purpose	Set an interface property to a specific value	
Syntax	<pre>set(h, 'propertyname', value[, 'propertyname2', value2,])</pre>	
Arguments	h Handle for a COM object previously returned from <code>actxcontrol</code> , <code>actxserver</code> , get, or i nvoke.	
	propertyname A string that is the name of the property to be set.	
	val ue The value to which the interface property is set.	
Description	Set one or more properties of a COM object to the specified value(s). Each propertyname argument must be followed by a value argument.	
	See "Converting Data" in the External Interfaces documentation for information on how MATLAB converts workspace matrices to COM data types.	
Examples	Create an mwsamp control and use set to change the Label and Radi us properties:	
	<pre>f = figure ('pos', [100 200 200 200]); h = actxcontrol ('mwsamp.mwsampctrl.1', [0 0 200 200], f);</pre>	
	<pre>set(h, 'Label', 'Click to fire event', 'Radius', 40); invoke(h, 'Redraw');</pre>	
See Also	get, inspect, i sprop, addproperty, del eteproperty	

Purpose	Configure or display serial port object properties	
Syntax	<pre>set(obj) props = set(obj) set(obj, 'PropertyName') props = set(obj, 'PropertyName') set(obj, 'PropertyName', PropertyValue,) set(obj, PN, PV) set(obj, S)</pre>	
Arguments	obj	A serial port object or an array of serial port objects.
	'PropertyName'	A property name for obj .
	PropertyValue	A property value supported by <i>PropertyName</i> .
	PN	A cell array of property names.
	PV	A cell array of property values.
	S	A structure with property names and property values.
	props	A structure array whose field names are the property names for obj , or cell array of possible values.
Description	<pre>set(obj) displays all configurable properties values for obj. If a property has a finite list of possible string values, then these values are also displayed. props = set(obj) returns all configurable properties and their possible values for obj to props. props is a structure whose field names are the property names of obj, and whose values are cell arrays of possible property values. If the property does not have a finite set of possible values, then the cell array is empty.</pre>	
	set(obj, ' <i>PropertyNam</i> e') displays the valid values for <i>PropertyName</i> if it possesses a finite list of string values.	
	<pre>props = set(obj, 'PropertyName') returns the valid values for PropertyName to props. props is a cell array of possible string values or an empty cell array if PropertyName does not have a finite list of possible values.</pre>	

set (serial)

	set (obj , ' $PropertyName'$, $PropertyValue, \ldots$) configures multiple property values with a single command.
	set (obj , PN, PV) configures the properties specified in the cell array of strings PN to the corresponding values in the cell array PV. PN must be a vector. PV can be m-by-n where m is equal to the number of serial port objects in obj and n is equal to the length of PN.
	set (obj , S) configures the named properties to the specified values for obj . S is a structure whose field names are serial port object properties, and whose field values are the values of the corresponding properties.
Remarks	Refer to "Configuring Property Values" for a list of serial port object properties that you can configure with set.
	You can use any combination of property name/property value pairs, structures, and cell arrays in one call to set. Additionally, you can specify a property name without regard to case, and you can make use of property name completion. For example, if s is a serial port object, then the following commands are all valid.
	<pre>set(s, 'BaudRate') set(s, 'baudrate') set(s, 'BAUD')</pre>
	If you use the $\operatorname{hel} p$ command to display help for set , then you need to supply the pathname shown below.
	help serial/set
Examples	This example illustrates some of the ways you can use set to configure or return property values for the serial port object s.
	<pre>s = serial('COM1'); set(s, 'BaudRate', 9600, 'Parity', 'even') set(s, {'StopBits', 'RecordName'}, {2, 'sydney.txt'}) set(s, 'Parity') [{none} odd even mark space]</pre>
See Also	Functions get

Purpose	Configure or display timer object properties
Syntax	<pre>set(obj) prop_struct = set(obj) set(obj, 'PropertyName') prop_cell = set(obj, 'PropertyName') set(obj, 'PropertyName', PropertyValue,) set(obj, S) set(obj, PN, PV)</pre>
Description	set(obj) displays property names and their possible values for all configurable properties of timer object obj. obj must be a single timer object.
	prop_struct=set(obj) returns the property names and their possible values for all configurable properties of timer object obj. obj must be a single timer object. The return value, prop_struct, is a structure whose field names are the property names of obj, and whose values are cell arrays of possible property values or empty cell arrays if the property does not have a finite set of possible string values.
	set(obj,' <i>PropertyName</i> ') displays the possible values for the specified property, <i>PropertyName</i> , of timer object obj. obj must be a single timer object.
	prop_cell =set(obj, ' <i>PropertyName</i> ') returns the possible values for the specified property, <i>PropertyName</i> , of timer object obj. obj must be a single timer object. The returned array, prop_cell, is a cell array of possible value strings or an empty cell array if the property does not have a finite set of possible string values.
	set (obj, ' <i>PropertyName</i> ', PropertyValue,) configures the property, <i>PropertyName</i> , to the specified value, PropertyValue, for timer object obj. You can specify multiple property name/property value pairs in a single statement. obj can be a single timer object or a vector of timer objects, in which case set configures the property values for all the timer objects specified.
	set (obj , S) configures the properties of obj , with the values specified in S, where S is a structure whose field names are object property names.

	set (obj, PN, PV) configures the properties specified in the cell array of strings, PN, to the corresponding values in the cell array PV, for the timer object obj. PN must be a vector. If obj is an array of timer objects, PV can be an M-by-N cell array, where M is equal to the length of timer object array and N is equal to the length of PN. In this case, each timer object is updated with a different set of values for the list of property names contained in PN.					
	Note Param-value string pairs, structures, and param-value cell array pairs can be use in the same call to set.					
Example	Create a timer object.					
	t = timer;					
	Display all configurable properties and their possible values.					
	<pre>set(t) set(t) BusyMode: [{drop} queue error] ErrorFcn ExecutionMode: [{singleShot} fixedSpacing fixedDelay fixedRate] LastError: [{none} busy callback] Name Period StartDelay StartFcn StopFcn Tag TasksToExecute TimerFcn UserData</pre>					
	Retrieve the possible values of the Execut i onMode property.					
	<pre>set(t, 'ExecutionMode') ans =</pre>					
	' si ngl eShot' ' fi xedSpaci ng' ' fi xedDel ay'					

'fixedRate'

Set the value of a specific timer object property.

set(t, 'ExecutionMode', 'FixedRate')

Set the values of several properties of the timer object.

set(t, 'TimerFcn', 'callbk', 'Period', 10)

Use a cell array to specify the names of the properties you want to set and another cell array to specify the values of these properties.

set(t, {'StartDelay', 'Period'}, {30, 30})

See Also timer, get

setappdata

Purpose	Set application-defined data
Syntax	<pre>setappdata(h, name, value)</pre>
Description	set appdata(h, name, val ue) sets application-defined data for the object with handle h. The application-defined data, which is created if it does not already exist, is assigned a name and a val ue. val ue can be type of data.
See Also	getappdata, i sappdata, rmappdata

Purpose	Return the set difference of two vectors
Syntax	<pre>c = setdiff(A, B) c = setdiff(A, B, 'rows') [c,i] = setdiff()</pre>
Description	c = setdiff(A, B) returns the values in A that are not in B. The resulting vector is sorted is ascending order. In set theoretic terms, $c = A - B$. A and B can be cell arrays of strings.
	$c \; = \; set di \; ff(A, B, ' \; rows') \;$ when A and B are matrices with the same number of columns returns the rows from A $\;$ that are not in B.
	[c, i] = setdiff() also returns an index vector i ndex such that $c = a(i)or c = a(i, :).$
Examples	$\begin{array}{l} A = magi c(5); \\ B = magi c(4); \\ [c,i] = set di ff(A(:), B(:)); \\ c' = 17 18 19 20 21 22 23 24 25 \\ i' = 1 10 14 18 19 23 2 6 15 \end{array}$
See Also	intersect, ismember, issorted, setxor, union, unique

setfield

Purpose	Set field of structure array				
	Note setfield is obsolete and will be removed in a future release. Please use dynamic field names instead.				
Syntax	<pre>s = setfield(s, 'field', v) s = setfield(s, {i,j}, 'field', {k}, v)</pre>				
Description	s = setfield(s, 'field', v), where s is a 1-by-1 structure, sets the contents of the specified field to the value v. This is equivalent to the syntax s. field = v.				
	$s = setfield(s, \{i, j\}, 'field', \{k\}, v)$ sets the contents of the specified field to the value v. This is equivalent to the syntax $s(i, j)$. field(k) = v. All subscripts must be passed as cell arrays—that is, they must be enclosed in curly braces (similar to{i, j} and {k} above). Pass field references as strings.				
Examples	<pre>Given the structure mystr(1, 1). name = 'alice'; mystr(1, 1). ID = 0; mystr(2, 1). name = 'gertrude'; mystr(2, 1). ID = 1; You can change the name field of mystr(2, 1) using mystr = setfield(mystr, {2, 1}, 'name', 'ted'); mystr(2, 1). name ans = ted The following example sets fields of a structure using setfield with variable</pre>				
	and quoted field names and additional subscripting arguments. class = 5; student = 'John_Doe';				

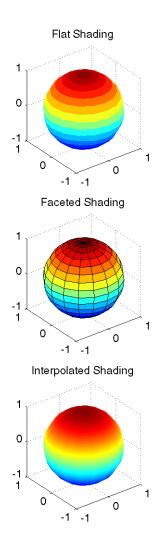
```
grades_Doe = [85, 89, 76, 93, 85, 91, 68, 84, 95, 73];
grades = [];
```

	grades	= setfi	0	ades, { ades_I		, stud	ent, '	Math',	{ 10, 21	: 30},
	You can ch	eck the	outcom	e using	the sta	andard	structu	re synt	ax.	
	grades	(class)	. John_I)oe. Mat	h(10, 2	21: 30)				
	ans =									
	85	89	76	93	85	91	68	84	95	73
See Also	fieldname	s, i sfi e	el d, ord	erfi el	ds, rmf	i el d				

setstr

PurposeSet string flag

Description This MATLAB 4 function has been renamed char in MATLAB 5.


setxor

Purpose	Set exclusive-or of two vectors				
Syntax	<pre>c = setxor(A, B) c = setxor(A, B, 'rows') [c, ia, ib] = setxor()</pre>				
Description	c = setxor(A, B) returns the values that are not in the intersection of A and B. The resulting vector is sorted. A and B can be cell arrays of strings.				
	c = setxor(A, B, 'rows') when A and B are matrices with the same number of columns returns the rows that are not in the intersection of A and B.				
	[c, ia, ib] = setxor() also returns index vectors ia and ib such that c is a sorted combination of the elements $c = a(ia)$ and $c = b(ib)$ or, for row combinations, $c = a(ia, :)$ and $c = b(ib, :)$.				
Examples	a = [-1 0 1 Inf -Inf NaN]; b = [-2 pi 0 Inf]; c = setxor(a, b)				
	c = -Inf -2.0000 -1.0000 1.0000 3.1416 NaN				
See Also	intersect, ismember, issorted, setdiff, union, unique				

shading

Purpose	Set color shading properties
Syntax	shading flat shading faceted shading interp
Description	The shadi ng function controls the color shading of surface and patch graphics objects.
	shadi ng flat each mesh line segment and face has a constant color determined by the color value at the end point of the segment or the corner of the face that has the smallest index or indices.
	shadi $\operatorname{ng}\ faceted\ flat\ shading\ with\ superimposed\ black\ mesh\ lines.$ This is the default shading mode.
	shadi ng interp varies the color in each line segment and face by interpolating the colormap index or true color value across the line or face.
Examples	Compare a flat, faceted, and interpolated-shaded sphere.
	<pre>subpl ot (3, 1, 1) sphere(16) axi s square shadi ng fl at title('Fl at Shadi ng')</pre>
	subpl ot (3, 1, 2)
	sphere(16) axis square shading faceted title('Faceted Shading')

shading

Algorithm

shadi ng sets the EdgeCol or and FaceCol or properties of all surface and patch graphics objects in the current axes. shadi ng sets the appropriate values,
depending on whether the surface or patch objects represent meshes or solid surfaces.

See Also fill, fill3, hidden, mesh, patch, pcolor, surf The EdgeColor and FaceColor properties for surface and patch graphics objects.

"Color Operations" for related functions

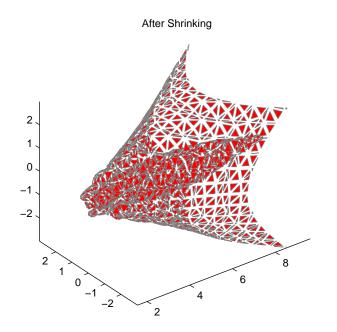
shiftdim

Purpose	Shift dimensions		
Syntax	B = shiftdim(X, n) [B, nshifts] = shiftdim(X)		
Description	B = shi ftdim(X, n) shifts the dimensions of X by n. When n is positive, shi ftdim shifts the dimensions to the left and wraps the n leading dimensions to the end. When n is negative, shi ftdim shifts the dimensions to the right and pads with singletons.		
	[B, nshifts] = shiftdim(X) returns the array B with the same number of elements as X but with any leading singleton dimensions removed. A singleton dimension is any dimension for which si $ze(A, dim) = 1$. nshifts is the number of dimensions that are removed.		
	If X is a scalar, shiftdim has no effect.		
Examples	The shiftdim command is handy for creating functions that, like sum or diff, work along the first nonsingleton dimension.		
	a = rand(1, 1, 3, 1, 2); [b, n] = shiftdim(a); % b is 3-by-1-by-2 and n is 2. c = shiftdim(b, -n); % c == a. d = shiftdim(a, 3); % d is 1-by-2-by-1-by-3.		
See Also	circshift, reshape, squeeze		

shrinkfaces

Purpose	Reduce the size of patch faces
Syntax	<pre>shrinkfaces(p, sf) nfv = shrinkfaces(p, sf) nfv = shrinkfaces(fv, sf) shrinkfaces(p), shrinkfaces(fv) nfv = shrinkfaces(f, v, sf) [nf, nv] = shrinkfaces()</pre>
Description	shri nkfaces(p, sf) shrinks the area of the faces in patch p to shrink factor sf. A shrink factor of 0.6 shrinks each face to 60% of its original area. If the patch contains shared vertices, MATLAB creates nonshared vertices before performing the face-area reduction.
	nfv = shrinkfaces(p, sf) returns the face and vertex data in the struct nfv , but does not set the Faces and Vertices properties of patch p.
	nfv = shrinkfaces(fv, sf) uses the face and vertex data from the struct fv .
	shrinkfaces(p) and shrinkfaces(fv) (without specifying a shrink factor) assume a shrink factor of 0.3.
	nfv = shrinkfaces(f, v, sf) uses the face and vertex data from the arrays f and v.
	[nf, nv] = shrinkfaces() returns the face and vertex data in two separate arrays instead of a struct.
Examples	This example uses the flow data set, which represents the speed profile of a submerged jet within a infinite tank (type hel p fl ow for more information). Two isosurfaces provide a before and after view of the effects of shrinking the face size.
	• First reducevol ume samples the flow data at every other point and then i sosurface generates the faces and vertices data.
	• The patch command accepts the face/vertex struct and draws the first (p1) isosurface.
	• Use the daspect, view, and axis commands to set up the view and then add a title.

• The shrinkfaces command modifies the face/vertex data and passes it directly to patch.


```
[x, y, z, v] = flow;
[x, y, z, v] = reducevolume(x, y, z, v, 2);
fv = isosurface(x, y, z, v, -3);
p1 = patch(fv);
set(p1, 'FaceColor', 'red', 'EdgeColor', [.5, .5, .5]);
daspect([1 1 1]); view(3); axis tight
title('Original')
figure
```

```
p2 = patch(shrinkfaces(fv,.3));
set(p2, 'FaceColor', 'red', 'EdgeColor', [.5,.5,.5]);
daspect([1 1 1]); view(3); axis tight
```

shrinkfaces

title('After Shrinking')

See Also i sosurface, patch, reducevol ume, daspect, vi ew, axi s "Volume Visualization" for related functions

sign

Purpose	Signum function
Syntax	Y = sign(X)
Description	Y = sign(X) returns an array Y the same size as X , where each element of Y is:
	• 1 if the corresponding element of X is greater than zero
	• 0 if the corresponding element of X equals zero
	 -1 if the corresponding element of X is less than zero
	For nonzero complex X, $sign(X) = X$. $/abs(X)$.
See Also	abs, conj, i mag, real

Purpose	Sine
Syntax	$Y = \sin n(X)$
Description	The sin function operates element-wise on arrays. The function's domains and ranges include complex values. All angles are in radians.
	Y = sin(X) returns the circular sine of the elements of X.
Examples	Graph the sine function over the domain $-\pi \le x \le \pi$. x = -pi: 0.01: pi; plot(x, sin(x)), grid on

-0.6 -0.8 -1 -1

-3

-2

-1

0

1

The expression $\sin{(pi)}$ is not exactly zero, but rather a value the size of the floating-point accuracy eps, because pi is only a floating-point approximation to the exact value of π .

2

3

4

Definition	The sine can be defined as		
	$\sin(x+iy) = \sin(x)\cosh(y) + i\cos(x)\sinh(y)$		
	$\sin(z) = \frac{e^{iz} - e^{-iz}}{2i}$		
Algorithm	si n uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc. business, by Kwok C. Ng, and others. For information about FDLIBM, see http: //www. netl i b. org.		

See Also asi n, asi nh, si nh

Purpose	Convert to single-precision				
Syntax	B = single(A)	B = single(A)			
Description	B = si ngl e(A) converts the matrix A to single-precision, returning that value in B. A can be any numeric object (such as a doubl e). If A is already single-precision, si ngl e has no effect. Single-precision quantities require less storage than double-precision quantities, but have less precision and a smaller range.				
	The single class is primarily meant to be used to store single-precision values. Hence most operations that manipulate arrays without changing their elements are defined. Examples are reshape, size, the relational operators, subscripted assignment and subscripted reference. No math operations are defined for single objects.				
	You can define your own methods for the si ngl e class by placing th appropriately named method in an @si ngl e directory within a dire your path.				
Examples	a = magic(b = single				
	whos Name	Si ze	Bytes	Cl ass	
			Ū		
	a b	4x4 4x4	128 64	double array single array	
See Also	doubl e				

sinh

Purpose	Hyperbolic sine		
Syntax	Y = sinh(X)		
Description	The si nh function operates element-wise on arrays. The function's domains and ranges include complex values. All angles are in radians.		
	Y = si nh(X) returns the hyperbolic sine of the elements of X.		
Examples	Graph the hyperbolic sine function over the domain $-5 \le x \le 5$.		
	x = -5: 0.01: 5; plot(x, sinh(x)), grid on		
	80		
	60		
	40		
	20		
	0		
	-20		
	-40		
	-60		
Definition	The hyperbolic sine can be defined as		
	$\sinh(z) = \frac{e^z - e^{-z}}{2}$		
Algorithm	si nh uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc. business, by Kwok C. Ng, and others. For information about FDLIBM, see http: //www. netl i b. org.		

See Also asi n, asi nh, si n

Purpose	Array dimensions				
Syntax	<pre>d = size(X) [m, n] = size(X) m = size(X, dim) [d1, d2, d3,, dr</pre>	n] = size(X)			
Description	d = $si ze(X)$ returns the sizes of each dimension of array X in a vector d with ndi ms(X) elements.				
	[m, n] = si ze(X) returns the size of matrix X in separate variables m and n.				
	m = size(X, dim)	returns the size of the dimension of X specified by scalar di m.			
	[d1, d2, d3, , dr array X in separate	n] = si ze(X) returns the sizes of the first n dimensions of e variables.			
	If the number of o	utput arguments n does not equal $ndims(X)$, then for:			
	n > ndims(X)	si ze returns ones in the "extra" variables, i.e., outputs ndi $ms(X) + 1$ through n.			
	n < ndims(X) dn contains the product of the sizes of the remain dimensions of X, i.e., dimensions n+1 through ndi				
	number of rows. T	array, si ze returns the length of the Java array as the he number of columns is always 1. For a Java array of describes only the top level array.			
Examples	Example 1. The si m = size(rand	ize of the second dimension of $rand(2, 3, 4)$ is 3. (2, 3, 4), 2)			
	m = 3				
	Here the size is output as a single vector.				

Here the size of each dimension is assigned to a separate variable.

```
[m, n, p] = size(rand(2, 3, 4))
m =
2
n =
3
p =
4
```

Example 2. If X = ones(3, 4, 5), then

[d1, d2, d3] = size(X)d1 = d2 = d3 = 3

But when the number of output variables is less than ndims(X):

$$[d1, d2] = size(X)$$

 $d1 = d2 = 3 20$

The "extra" dimensions are collapsed into a single product.

If n > ndims(X), the "extra" variables all represent singleton dimensions:

$$[d1, d2, d3, d4, d5, d6] = size(X)$$

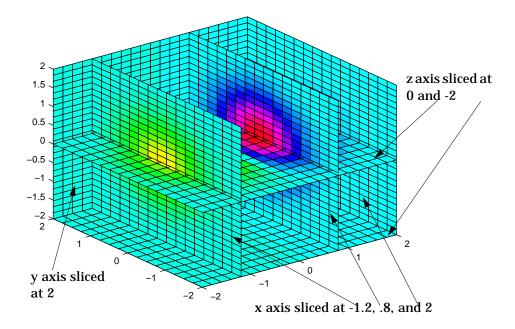
See Also exist, length, whos

Purpose	Size of serial port object array		
Syntax	<pre>d = size(obj) [m, n] = size(obj) [m1, m2,, mn] = size(obj) m = size(obj, dim)</pre>		
Arguments	obj	A serial port object or an array of serial port objects.	
	di m	The dimension of obj .	
	d	The number of rows and columns in obj .	
	m	The number of rows in obj , or the length of the dimension specified by di m.	
	n	The number of columns in obj .	
	m1, m2, , m n	The length of the first N dimensions of obj .	
Description	d = size(obj rows and colum) returns the two-element row vector d containing the number of mns in obj .	
	[m, n] = size output variabl	(obj) returns the number of rows and columns in separate es.	
	$[m1,m2,m3,\ldots,mn]~=~size(obj)$ returns the length of the first n dimensions of obj .		
	-	, dim) returns the length of the dimension specified by the scalar ple, si $ze(obj, 1)$ returns the number of rows.	
See Also	Functions length		

slice

Purpose	Volumetric slice plot
Syntax	<pre>slice(V, sx, sy, sz) slice(X, Y, Z, V, sx, sy, sz) slice(V, XI, YI, ZI) slice(X, Y, Z, V, XI, YI, ZI) slice(, 'method') h = slice()</pre>
Description	sl i ce displays orthogonal slice planes through volumetric data.
	sl i ce(V, sx, sy, sz) draws slices along the x, y, z directions in the volume V at the points in the vectors sx, sy, and sz. V is an <i>m</i> -by- <i>n</i> -by- <i>p</i> volume array containing data values at the default location $X = 1$: n, $Y = 1$: m, $Z = 1$: p. Each element in the vectors sx, sy, and sz defines a slice plane in the <i>x</i> -, <i>y</i> -, or <i>z</i> -axis direction.
	sl i ce(X, Y, Z, V, sx, sy, sz) draws slices of the volume V. X, Y, and Z are three-dimensional arrays specifying the coordinates for V. X, Y, and Z must be monotonic and orthogonally spaced (as if produced by the function meshgri d). The color at each point is determined by 3-D interpolation into the volume V.
	sl i ce(V, XI, YI, ZI) draws data in the volume V for the slices defined by XI, YI, and ZI. XI, YI, and ZI are matrices that define a surface, and the volume is evaluated at the surface points. XI, YI, and ZI must all be the same size.
	sl i ce(X, Y, Z, V, XI , YI , ZI) draws slices through the volume V along the surface defined by the arrays XI , YI , ZI .
	$slice(\ldots, '\mbox{ method}')\ specifies the interpolation method. ' method' is 'linear', 'cubic', or 'nearest'.$
	• linear specifies trilinear interpolation (the default).
	• cubi c specifies tricubic interpolation.
	 nearest specifies nearest neighbor interpolation.
	h = slice() returns a vector of handles to surface graphics objects.

Remarks The color drawn at each point is determined by interpolation into the volume V.


Examples

Visualize the function

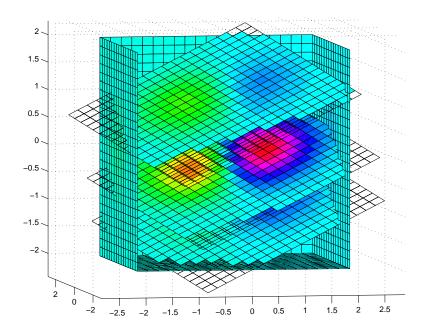
 $V = x e^{(-x^2 - y^2 - z^2)}$

over the range $-2 \le x \le 2$, $-2 \le y \le 2$, $-2 \le z \le 2$:

[x, y, z] = meshgrid(-2:.2:2, -2:.25:2, -2:.16:2); v = x.*exp(-x.^2-y.^2-z.^2); xslice = [-1.2,.8,2]; yslice = 2; zslice = [-2,0]; slice(x, y, z, v, xslice, yslice, zslice) colormap hsv

Slicing At Arbitrary Angles

You can also create slices that are oriented in arbitrary planes. To do this,

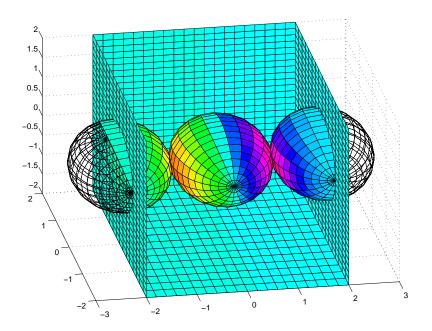

- Create a slice surface in the domain of the volume (surf, linspace).
- Orient this surface with respect the the axes (rotate).

- Get the XData, YData, and ZData of the surface (get).
- Use this data to draw the slice plane within the volume.

For example, these statements slice the volume in the first example with a rotated plane. Placing these commands within a for loop "passes" the plane through the volume along the z-axis.

```
for i = -2:.5:2
    hsp = surf(linspace(-2, 2, 20), linspace(-2, 2, 20), zeros(20)+i);
    rotate(hsp, [1, -1, 1], 30)
    xd = get(hsp, 'XData');
    yd = get(hsp, 'YData');
    zd = get(hsp, 'ZData');
    del ete(hsp)
    slice(x, y, z, v, [-2, 2], 2, -2) % Draw some volume boundaries
    hold on
    slice(x, y, z, v, xd, yd, zd)
    hold off
    axis tight
    view(-5, 10)
    drawnow
end
```

The following picture illustrates three positions of the same slice surface as it passes through the volume.

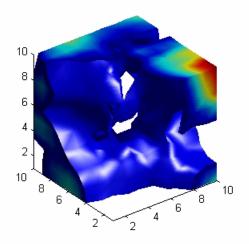

Slicing with a Nonplanar Surface

You can slice the volume with any surface. This example probes the volume created in the previous example by passing a spherical slice surface through the volume.

```
[xsp, ysp, zsp] = sphere;
slice(x, y, z, v, [-2, 2], 2, -2) % Draw some volume boundaries
for i = -3:.2:3
    hsp = surface(xsp+i, ysp, zsp);
    rotate(hsp, [1 0 0], 90)
    xd = get(hsp, 'XData');
    yd = get(hsp, 'XData');
    zd = get(hsp, 'ZData');
    delete(hsp)
    hold on
    hslicer = slice(x, y, z, v, xd, yd, zd);
    axis tight
```

```
xlim([-3,3])
view(-10,35)
drawnow
delete(hslicer)
hold off
end
```

The following picture illustrates three positions of the spherical slice surface as it passes through the volume.



See Also interp3, meshgrid

"Volume Visualization" for related functions Exploring Volumes with Slice Planes for more examples.

Purpose	Smooth 3-D data
Syntax	<pre>W = smooth3(V) W = smooth3(V, 'filter') W = smooth3(V, 'filter', size) W = smooth3(V, 'filter', size, sd)</pre>
Description	W = smooth3(V) smooths the input data V and returns the smoothed data in W.
	W = smooth3(V, 'filter') filter determines the convolution kernel and can be the strings:
	 'gaussi an' 'box' (default)
	W = smooth3(V, 'filter', size) sets the size of the convolution kernel (default is [3 3 3]). If size is scalar, then size is interpreted as [size, size, size].
	W = smooth3(V, 'filter', size, sd) sets an attribute of the convolution kernel. When <i>filter</i> is gaussian, sd is the standard deviation (default is .65).
Examples	This example smooths some random 3-D data and then creates an isosurface with end caps.
	<pre>rand('seed', 0) data = rand(10, 10, 10); data = smooth3(data, 'box', 5); p1 = patch(isosurface(data, .5), 'FaceColor', 'blue', 'EdgeColor', 'none'); p2 = patch(isocaps(data, .5), 'FaceColor', 'interp', 'EdgeColor', 'none'); isonormals(data, p1) view(3); axis vis3d tight camlight; lighting phong</pre>

smooth3

See Alsoi socaps, i sonormal s, i sosurface, patch"Volume Visualization" for related functionsSee Displaying an Isosurface for another example

Purpose	Sort elements in ascending order
Syntax	<pre>B = sort(A) B = sort(A, dim) [B, INDEX] = sort(A,)</pre>
Description	B = sort(A) sorts the elements along different dimensions of an array, and arranges those elements in ascending order.

If A is a	sort(A)
Vector	Sorts the elements of A in ascending order.
Matrix	Sorts each column of A in ascending order.
Multidimensional array	Sorts A along the first non-singleton dimension, and returns an array of sorted vectors.
Cell array of strings	Sorts the strings in ASCII dictionary order.

Real, complex, and string elements are permitted. For elements of A with identical values, the order of these elements is preserved in the sorted list. When A is complex, the elements are sorted by magnitude, i.e., abs(A), and where magnitudes are equal, further sorted by phase angle, i.e., angl e(A), on the interval $[-\pi, \pi]$. If A includes any NaN elements, sort places these at the end.

B = sort(A, dim) sorts the elements along the dimension of A specified by a scalar dim. If dim is a vector, sort works iteratively on the specified dimensions. Thus, $sort(A, [1 \ 2])$ is equivalent to sort(sort(A, 2), 1).

```
[B, IX] = sort(A, ...) also returns an array of indices IX, where
si ze(IX) = si ze(A). If A is a vector, B = A(IX). If A is an m-by-n matrix, then
each column of IX is a permutation vector of the corresponding column of A,
such that
```

```
for j = 1: n
 B(:,j) = A(IX(:,j),j);
end
```

	If A has repea original order		ements of equal value, the returned indices preserve the
Examples	This example sorts a matrix A in each dimension, and then sorts it a third time, requesting an array of indices for the sorted result.		
	$A = \begin{bmatrix} 3 & 7 \\ 0 & 4 \end{bmatrix}$	5 2];	
	<pre>sort(A, 1)</pre>		
	ans =		
		4	2
	3	7	5
	sort(A,2)		
	ans =		
		5	
	0	2	4
	[B, IX] = sort(A, 2)		
	B =		
	3	5	
	0	2	4
	IX =		
	1		
	1	3	2
See Also	max, mean, me	di an, mi	in, sortrows

sortrows

Purpose	Sort rows in ascending order			
Syntax	<pre>B = sortrows(A) B = sortrows(A, column) [B, index] = sortrows(A)</pre>			
Description	B = sortrows(A) sorts the rows of A as a group in ascending order. Argument A must be either a matrix or a column vector.			
	For strings, this is the familiar dictionary sort. When A is complex, the elements are sorted by magnitude, and, where magnitudes are equal, further sorted by phase angle on the interval $[-\pi, \pi]$.			
	$B = \text{sortrows}(A, \text{column})$ sorts the matrix based on the columns specified in the vector column. For example, $\text{sortrows}(A, [2\ 3])$ sorts the rows of A by the second column, and where these are equal, further sorts by the third column.			
	[B, index] = sortrows(A) also returns an index vector index.			
	If A is a column vector, then $B = A(i ndex)$.			
	If A is an m-by-n matrix, then $B = A(i ndex, :)$.			
Examples	Given the 5-by-5 string matrix,			
-	A = ['one ';'two ';'three';'four ';'five '];			
	The commands $B = $ sortrows(A) and $C = $ sortrows(A, 1) yield			
	B = C = $five four$ $four five$ $one one$ $three two$ $two three$			
See Also	sort			

sound

Purpose	Convert vector into sound		
Syntax	<pre>sound(y, Fs) sound(y) sound(y, Fs, bits)</pre>		
Description	sound(y, Fs), sends the signal in vector y (with sample frequency Fs) to the speaker on PC and most UNIX platforms. Values in y are assumed to be in the range $-1.0 \le y \le 1.0$. Values outside that range are clipped. Stereo sound is played on platforms that support it when y is an n-by-2 matrix.		
	Note The playback duration that results from setting Fs depends on the sound card you have installed. Most sound cards support sample frequencies of approximately 5-10kHz to 44.1KHz. Sample frequencies outside this range may produce unexpected results.		
	sound(y) plays the sound at the default sample rate or 8192 Hz. sound(y, Fs, bits) plays the sound using bits number of bits/sample, if possible. Most platforms support bits = 8 or bits = 16.		
Remarks	MATLAB supports all Windows-compatible sound devices.		
See Also	auread, auwrite, soundsc, wavread, wavwrite		

soundsc

Purpose	Scale data and play as sound			
Syntax	<pre>soundsc(y, Fs) soundsc(y) soundsc(y, Fs, bits) soundsc(y,, slim)</pre>			
Description	soundsc(y, Fs) sends the signal in vector y (with sample frequency Fs) to th speaker on PC and most UNIX platforms. The signal y is scaled to the range $-1.0 \le y \le 1.0$ before it is played, resulting in a sound that is played as loud a possible without clipping.			
	Note The playback duration that results from setting Fs depends on the sound card you have installed. Most sound cards support sample frequencies of approximately 5-10kHz to 44.1KHz. Sample frequencies outside this range may produce unexpected results.			
	soundsc(y) plays the sound at the default sample rate or 8192 Hz.			
	soundsc(y, Fs, bits) plays the sound using bits number of bits/sample if possible. Most platforms support bits = 8 or bits = 16.			
	soundsc(y,, slim) where $slim = [slow shigh]$ maps the values in y between slow and shigh to the full sound range. The default value is $slim = [min(y) max(y)]$.			
Remarks	MATLAB supports all Windows-compatible sound devices.			
See Also	auread, auwrite, sound, wavread, wavwrite			

spalloc

Purpose	Allocate space for sparse matrix		
Syntax	S = spalloc(m, n, nzmax)		
Description	S = spalloc(m, n, nzmax) creates an all zero sparse matrix S of size m-by-n with room to hold nzmax nonzeros. The matrix can then be generated column by column without requiring repeated storage allocation as the number of nonzeros grows.		
	spalloc(m, n, nzmax) is shorthand for		
	sparse([],[],[], m, n, nzmax)		
Examples	To generate efficiently a sparse matrix that has an average of at most three nonzero elements per column		
	<pre>S = spalloc(n, n, 3*n); for j = 1:n S(:,j) = [zeros(n-3, 1)' round(rand(3, 1))']'; end</pre>		

Purpose	Create sparse matrix		
Syntax	S = sparse(A) S = sparse(i, j, s, m, n, nzmax) S = sparse(i, j, s, m, n) S = sparse(i, j, s) S = sparse(m, n)		
Description	The sparse function generates matrices in the MATLAB sparse storage organization. S = sparse(A) converts a full matrix to sparse form by squeezing out any zero elements. If S is already sparse, sparse(S) returns S.		
	S = sparse(i, j, s, m, n, nzmax) uses vectors i, j, and s to generate an m-by-n sparse matrix such that $S(i(k), j(k)) = s(k)$, with space allocated for nzmax nonzeros. Vectors i, j, and s are all the same length. Any elements of s that are zero are ignored, along with the corresponding values of i and j. Any elements of s that have duplicate values of i and j are added together.		
	Note If any value in i or j is larger than the maximum integer size, 2^{31-1} , then the sparse matrix cannot be constructed.		
	To simplify this six-argument call, you can pass scalars for the argument s and one of the arguments i or j —in which case they are expanded so that i, j, and s all have the same length.		
	S = sparse(i, j, s, m, n) uses $nzmax = length(s)$.		
	S = sparse(i, j, s) uses $m = max(i)$ and $n = max(j)$. The maxima are computed before any zeros in s are removed, so one of the rows of $[i j s]$ might be $[m n 0]$.		
	S = sparse(m, n) abbreviates $sparse([], [], [], m, n, 0)$. This generates the ultimate sparse matrix, an m-by-n all zero matrix.		

Remarks	All of the MATLAB built-in arithmetic, logical, and indexing operations can be applied to sparse matrices, or to mixtures of sparse and full matrices. Operations on sparse matrices return sparse matrices and operations on full matrices return full matrices.
	In most cases, operations on mixtures of sparse and full matrices return full matrices. The exceptions include situations where the result of a mixed operation is structurally sparse, for example, A. *S is at least as sparse as S.
Examples	S = sparse(1: n, 1: n, 1) generates a sparse representation of the n-by-n identity matrix. The same S results from $S = sparse(eye(n, n))$, but this would also temporarily generate a full n-by-n matrix with most of its elements equal to zero.
	B = sparse(10000, 10000, pi) is probably not very useful, but is legal and works; it sets up a 10000-by-10000 matrix with only one nonzero element. Don't try full(B); it requires 800 megabytes of storage.
	This dissects and then reassembles a sparse matrix:
	<pre>[i,j,s] = find(S); [m,n] = size(S); S = sparse(i,j,s,m,n);</pre>
	So does this, if the last row and column have nonzero entries:
	[i,j,s] = find(S); S = sparse(i,j,s);
See Also	diag, find, full, nnz, nonzeros, nzmax, spones, sprandn, sprandsym, spy
	The sparfun directory

Purpose	Form least squares augmented system		
Syntax	S = spaugment(A, c)		
Description			
	Note In previous versions of MATLAB, the augmented matrix was used by sparse linear equation solvers, \ and /, for nonsquare problems. Now, MATLAB performs a least squares solve using the qr factorization of A instead.		

See Also spparms

spconvert

Purpose	Import matrix from sparse matrix external format		
Syntax	S = spconvert(D)		
Description	spconvert is used to create sparse matrices from a simple sparse format easily produced by non-MATLAB sparse programs. spconvert is the second step in the process:		
	1 Load an ASCII data file containing [i, j, v] or [i, j, re, im] as rows into a MATLAB variable.		
	2 Con	vert t	hat variable into a MATLAB sparse matrix.
	[i,j,r row an and for [m n C alread	r, s] t d thre ur elen)] or [y spar	ert (D) converts a matrix D with rows containing $[i, j, s]$ or o the corresponding sparse matrix. D must have an nnz or nnz+1 ee or four columns. Three elements per row generate a real matrix nents per row generate a complex matrix. A row of the form m n 0 0] anywhere in D can be used to specify si $ze(S)$. If D is se, no conversion is done, so spconvert can be used after D is either a MAT-file or an ASCII file.
Examples	Suppose the ASCII file uphill.dat contains		
	1	1	1. 00000000000000
	1	2	0. 5000000000000
	2	2	0. 333333333333333
	1	3	0. 333333333333333
	2	3	0. 2500000000000
	3	3	0. 2000000000000
	1	4	0. 2500000000000
	2	4	0. 2000000000000
	3	4	0. 166666666666667
	4 4	4 4	0. 142857142857143 0. 00000000000000
	-	-	
	Then t	he sta	tements
		-	ill.dat
	H =	spco	nvert(uphill)

H =	
(1, 1)	1.0000
(1, 2)	0. 5000
(2, 2)	0. 3333
(1,3)	0. 3333
(2, 3)	0. 2500
(3,3)	0. 2000
(1,4)	0. 2500
(2, 4)	0. 2000
(3, 4)	0. 1667
(4, 4)	0.1429

recreate sparse(triu(hilb(4))), possibly with roundoff errors. In this case, the last line of the input file is not necessary because the earlier lines already specify that the matrix is at least 4-by-4.

spdiags

Purpose	Extract and create sparse band and diagonal matrices			
Syntax	[B, d] = spdi ags(A) B = spdi ags(A, d) A = spdi ags(B, d, A) A = spdi ags(B, d, m, n)			
Description	The spdi ags function generalizes the function di ag. Four different operations distinguished by the number of input arguments, are possible:			
	[B, d] = spdiags(A) extracts all nonzero diagonals from the m-by-n matrix A. B is a min(m, n) -by-p matrix whose columns are the p nonzero diagonals of A. d is a vector of length p whose integer components specify the diagonals in A.			
	B = spdiags(A, d) extracts the diagonals specified by d.			
	A = spdi ags(B, d, A) replaces the diagonals specified by d with the columns of B. The output is sparse.			
	A = $spdiags(B, d, m, n)$ creates an m-by-n sparse matrix by taking the columns of B and placing them along the diagonals specified by d.			
	Note If a column of B is longer than the diagonal it's replacing, spdi ags takes elements of super-diagonals from the lower part of the column of B, and elements of sub-diagonals from the upper part of the column of B.			
Arguments	The spdi ags function deals with three matrices, in various combinations, as both input and output.			
	A An m-by-n matrix, usually (but not necessarily) sparse, with its nonzero or specified elements located on p diagonals.			
	B A min(m, n) -by-p matrix, usually (but not necessarily) full, whose columns are the diagonals of A.			
	d A vector of length p whose integer components specify the diagonals in A.			

Roughly, A, B, and d are related by

```
for k = 1: p
 B(:, k) = di ag(A, d(k))
end
```

Some elements of B, corresponding to positions outside of A, are not defined by these loops. They are not referenced when B is input and are set to zero when B is output.

Examples Example 1. This example generates a sparse tridiagonal representation of the classic second difference operator on n points.

e = ones(n, 1);A = spdiags([e - 2*e e], -1:1, n, n)

Turn it into Wilkinson's test matrix (see gallery):

A = spdi ags(abs(-(n-1)/2: (n-1)/2)', 0, A)

Finally, recover the three diagonals:

B = spdiags(A)

Example 2. The second example is not square.

A = [11 0 13]	0
0 22 0	24
0 0 33	0
41 0 0	44
0 52 0	0
0 0 63	0
0 0 0	74]

Here m = 7, n = 4, and p = 3.

The statement $[B, d] = \text{spdi} \operatorname{ags}(A)$ produces $d = [-3 \ 0 \ 2]'$ and

В	=	[41	11	0
		52	22	0
		63	33	13
		74	44	24]

Conversely, with the above B and d, the expression spdi ags(B, d, 7, 4) reproduces the original A.

Example 3. This example shows how spdi ags creates the diagonals when the columns of B are longer than the diagonals they are replacing.

```
B = repmat((1:6)', [1 7])
B =
    1
       1
             1
                     1
                        1
           1
                 1
              2
                 2
    2
       2
           2
                     2
                        2
    3
       3
           3 3
                 3
                     3
                        3
    4
       4
          4 4
                 4
                    4
                        4
    5
       5
           5
              5
                 5
                     5
                        5
              6
    6
       6
           6
                 6
                     6 6
d = [-4 - 2 - 1 \ 0 \ 3 \ 4 \ 5];
A = spdiags(B, d, 6, 6);
full(A)
ans =
  1
     0
        0
            4
               5
                  6
     2
               5
                   6
  1
        0
            0
     2
        3
            0
               0
  1
                  6
     2
  0
        3
            4
               0
                  0
  1
     0
        3
            4
               5
                  0
     2
  0
        0
            4
               5
                  6
```

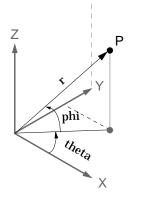
See Also

di ag

Purpose	Sparse identity matrix
Syntax	S = speye(m, n) S = speye(n)
Description	S = speye(m, n) forms an m-by-n sparse matrix with 1s on the main diagonal.
	S = speye(n) abbreviates $speye(n, n)$.
Examples	I = speye(1000) forms the sparse representation of the 1000-by-1000 identity matrix, which requires only about 16 kilobytes of storage. This is the same final result as $I = sparse(eye(1000, 1000))$, but the latter requires eight megabytes for temporary storage for the full representation.
See Also	spalloc, spones, spdiags, sprand, sprandn

spfun

Purpose	Apply function to nonzero sparse matrix elements		
Syntax	f = spfun(fun, S)		
Description	The spfun function selectively applies a function to only the <i>nonzero</i> elements of a sparse matrix S, preserving the sparsity pattern of the original matrix (except for underflow or if fun returns zero for some nonzero elements of S).		
	f = spfun(fun, S) evaluates $fun(S)$ on the nonzero elements of S. You can specify fun as a function handle or as an inline object.		
Remarks	Functions that operate element-by-element, like those in the elfun directory, are the most appropriate functions to use with spfun.		
Examples	Given the 4-by-4 sparse diagonal matrix		
	S = spdiags([1:4]', 0, 4, 4)		
	S =		
	(1, 1) 1		
	(2, 2) 2		
	(3, 3) 3		
	(4, 4) 4		
	Because fun returns nonzero values for all nonzero element of S, f = $spfun(@exp, S)$ has the same sparsity pattern as S.		
	f =		
	(1, 1) 2. 7183		
	(2, 2) 7. 3891		
	(3, 3) 20. 0855		
	(4, 4) 54. 5982		
	whereas $exp(S)$ has 1s where S has 0s.		
	<pre>full(exp(S))</pre>		
	ans =		
	2. 7183 1. 0000 1. 0000 1. 0000		
	1. 0000 7. 3891 1. 0000 1. 0000		

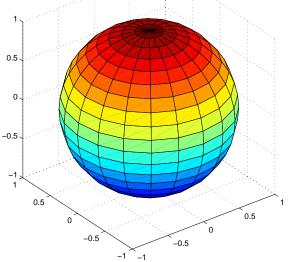

1.0000	1.0000	20. 0855	1.0000
1.0000	1.0000	1.0000	54. 5982

See Also

function handle (@), i nl i ne

sph2cart

Purpose	Transform spherical coordinates to Cartesian
Syntax	[x, y, z] = sph2cart(THETA, PHI, R)
Description	[x, y, z] = sph2cart(THETA, PHI, R) transforms the corresponding elements of spherical coordinate arrays to Cartesian, or <i>xyz</i> , coordinates. THETA, PHI, and R must all be the same size. THETA and PHI are angular displacements in radians from the positive <i>x</i> -axis and from the <i>x-y</i> plane, respectively.
Algorithm	The mapping from spherical coordinates to three-dimensional Cartesian coordinates is


$x = r \cdot (\cos(phi)) \cdot (\cos(theta))$
$y = r \cdot \cos(phi) \cdot \sin(theta)$
$z = r \cdot \sin(phi)$

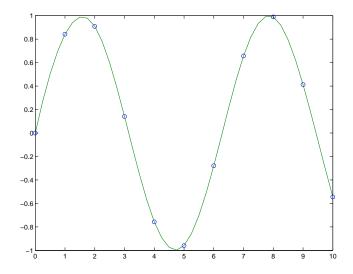
See Also

cart2pol, cart2sph, pol2cart

sphere

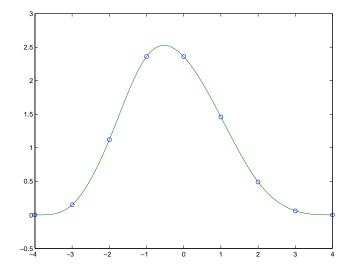
Purpose	Generate sphere
Syntax	<pre>sphere sphere(n) [X,Y,Z] = sphere()</pre>
Description	The sphere function generates the x -, y -, and z -coordinates of a unit sphere for use with surf and mesh.
	sphere generates a sphere consisting of 20-by-20 faces.
	sphere(n) draws a surf plot of an n-by-n sphere in the current figure.
	[X, Y, Z] = sphere(n) returns the coordinates of a sphere in three matrices that are $(n+1)-by-(n+1)$ in size. You draw the sphere with $surf(X, Y, Z)$ or $mesh(X, Y, Z)$.
Examples	Generate and plot a sphere.
	sphere axis equal
	1

sphere


See Also cyl i nder, axi s equal "Polygons and Surfaces" for related functions

spinmap

Purpose	Spin colormap
Syntax	<pre>spinmap spinmap(t) spinmap(t, inc) spinmap('inf')</pre>
Description	The spinmap function shifts the colormap RGB values by some incremental value. For example, if the increment equals 1, color 1 becomes color 2, color 2 becomes color 3, etc.
	spi nmap cyclically rotates the colormap for approximately five seconds using an incremental value of 2.
	spinmap(t) rotates the colormap for approximately 10*t seconds. The amount of time specified by t depends on your hardware configuration (e.g., if you are running MATLAB over a network).
	spi nmap(t, i nc) rotates the colormap for approximately 10*t seconds and specifies an increment i nc by which the colormap shifts. When i nc is 1, the rotation appears smoother than the default (i.e., 2). Increments greater than 2 are less smooth than the default. A negative increment (e.g., -2) rotates the colormap in a negative direction.
	spinmap('inf') rotates the colormap for an infinite amount of time. To break the loop, press Ctrl-C.
See Also	col ormap, col ormapedi tor
	"Color Operations" for related functions


spline

Purpose	Cubic spline data interpolation
Syntax	yy = spline(x, y, xx) pp = spline(x, y)
Description	yy = spline(x, y, xx) uses cubic spline interpolation to find yy , the values of the underlying function y at the points in the vector xx . The vector x specifies the points at which the data y is given. If y is a matrix, then the data is taken to be vector-valued and interpolation is performed for each row of y . For this case, $l ength(x)$ must equal si $ze(y, 2)$, and yy is si $ze(y, 1)$ -by-l $ength(xx)$.
	Note This is the opposite of the interp1(x, y, xx, 'spline') function which performs the interpolation for each column of matrix y. For this function, $l ength(x)$ must equal size(y, 1), and the resulting yy is $l ength(xx)$ -by-size(y, 2).
	pp = spline(x, y) returns the piecewise polynomial form of the cubic spline interpolant for later use with ppval and the spline utility unmkpp.
	Ordinarily, the not-a-knot end conditions are used. However, if y contains two more values than x has entries, then the first and last value in y are used as the endslopes for the cubic spline. Namely:
	f(x) = y(:, 2: end-1), df(min(x)) = y(:, 1), df(max(x)) = y(:, end)
Examples	Example 1. This generates a sine curve, then samples the spline over a finer mesh.
	x = 0:10; y = sin(x); xx = 0:.25:10; yy = spline(x, y, xx); plot(x, y, 'o', xx, yy)

Example 2. This illustrates the use of clamped or complete spline interpolation where end slopes are prescribed. Zero slopes at the ends of an interpolant to the values of a certain distribution are enforced.

```
 \begin{array}{l} x = -4:4; \\ y = [0 \ .15 \ 1.12 \ 2.36 \ 2.36 \ 1.46 \ .49 \ .06 \ 0]; \\ cs = spline(x, [0 \ y \ 0]); \\ xx = linspace(-4, 4, 101); \\ plot(x, y, 'o', xx, ppval(cs, xx), '-'); \end{array}
```

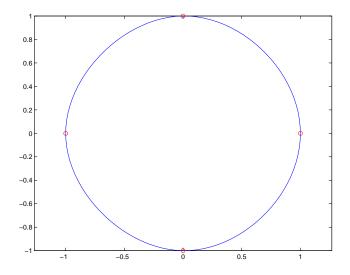

Example 3. The two vectors

t =	1900: 10: 1	1990;			
p =	[75.995	91.972	105.711	123. 203	131.669
	150. 697	179. 323	203. 212	226. 505	249.633];

represent the census years from 1900 to 1990 and the corresponding United States population in millions of people. The expression

spline(t, p, 2000)

uses the cubic spline to extrapolate and predict the population in the year 2000. The result is


ans = 270.6060

Example 4. The statements

 $\begin{array}{l} x = pi * [0: .5: 2]; \\ y = [0 \ 1 \ 0 - 1 \ 0 \ 1 \ 0; \\ 1 \ 0 \ 1 \ 0 - 1 \ 0 \ 1]; \\ pp = spl i ne(x, y); \end{array}$

```
yy = ppval(pp, linspace(0, 2*pi, 101));
plot(yy(1,:), yy(2,:), '-b', y(1, 2:5), y(2, 2:5), 'or'), axis equal
```

generate the plot of a circle, with the five data points $y(:, 2), \ldots, y(:, 6)$ marked with o's. Note that this y contains two more values (i.e., two more columns) than does x, hence y(:, 1) and y(:, end) are used as endslopes.

Algorithm	A tridiagonal linear system (with, possibly, several right sides) is being solved for the information needed to describe the coefficients of the various cubic polynomials which make up the interpolating spline. spl i ne uses the functions ppval, mkpp, and unmkpp. These routines form a small suite of functions for working with piecewise polynomials. For access to more advanced features, see
	working with piecewise polynomials. For access to more advanced features, see the M-file help for these functions and the Spline Toolbox.

See Also interp1, ppval, mkpp, unmkpp

References [1] de Boor, C., *A Practical Guide to Splines*, Springer-Verlag, 1978.

spones

Purpose	Replace nonzero sparse matrix elements with ones
Syntax	R = spones(S)
Description	R = spones(S) generates a matrix R with the same sparsity structure as S , but with 1's in the nonzero positions.
Examples	c = sum(spones(S)) is the number of nonzeros in each column. r = sum(spones(S'))' is the number of nonzeros in each row. sum(c) and $sum(r)$ are equal, and are equal to $nnz(S)$.
See Also	nnz, spalloc, spfun

Purpose	Set paramete	rs for sparse matrix routines
Syntax	<pre>spparms('key spparms values = spp [keys, values spparms(valu value = sppa spparms('def spparms('tig</pre>	parms s] = spparms ues) arms('key') fault')
Description	spparms('key', value) sets one or more of the <i>tunable</i> parameters used in the sparse routines, particularly the minimum degree orderings, colmmd and symmmd. In ordinary use, you should never need to deal with this function.	
	The meaning	s of the key parameters are
	'spumoni'	Sparse Monitor flag:
		0 Produces no diagnostic output, the default
		1 Produces information about choice of algorithm based on matrix structure, and about storage allocation
		2 Also produces very detailed information about the sparse matrix algorithms
	'thr_rel', 'thr_abs'	Minimum degree threshold is thr_rel *mi ndegree + thr_abs.
	' exact_d'	Nonzero to use exact degrees in minimum degree. Zero to use approximate degrees.
	'supernd'	If positive, minimum degree amalgamates the supernodes every supernd stages.
	'rreduce'	If positive, minimum degree does row reduction every <code>rreduce stages</code> .
	'wh_frac'	Rows with density $>$ wh_frac are ignored in col mmd.
	'autommd'	Nonzero to use minimum degree (MMD) orderings with Cholesky- and QR-based \smallsetminus and $/.$

spparms

'autoamd'	Nonzero to use col amd ordering with the UMFPACK LU-based \setminus and /.
' pi v_tol '	Pivot tolerance used by the UMFPACK LU-based \setminus and /.
' bandden'	Band density used by LAPACK-based \ and / for banded matrices. Band density is defined as (# nonzeros in the band)/(# nonzeros in a full band). If bandden = 1. 0, never use band solver. If bandden = 0. 0, always use band solver. Default is 0. 5.

Note Cholesky-based \setminus and / on symmetric positive definite matrices use symmed.

LU-based $\$ and / (UMFPACK) on square matrices use a modified col and. QR-based $\$ and / on rectangular matrices use col mmd.

spparms, by itself, prints a description of the current settings.

val ues = spparms returns a vector whose components give the current settings.

[keys, values] = spparms returns that vector, and also returns a character matrix whose rows are the keywords for the parameters.

spparms(values), with no output argument, sets all the parameters to the values specified by the argument vector.

value = spparms('key') returns the current setting of one parameter.

spparms(' defaul t') sets all the parameters to their default settings.

spparms('tight') sets the minimum degree ordering parameters to their *tight* settings, which can lead to orderings with less fill-in, but which make the ordering functions themselves use more execution time.

The key parameters for default and tight settings are

	Keyword	Default	Tight
values(1)	' spumoni '	0.0	
values(2)	'thr_rel'	1.1	1.0
values(3)	'thr_abs'	1.0	0.0
values(4)	'exact_d'	0.0	1.0
values(5)	' supernd'	3.0	1.0
values(6)	'rreduce'	3.0	1.0
values(7)	'wh_frac'	0.5	0.5
values(8)	'autommd'	1.0	
values(9)	'autoamd'	1.0	
values(10)	' pi v_tol '	0.1	
values(11)	' bandden'	0.5	

Notes

Sparse A\b on symmetric positive definite A uses symmed and chol.

Sparse A\b on general square A uses UMFPACK and its modified col and reordering. col amd does not used the parameters above, other than ' autoamd' which turns the preordering on or off, and ' pi v_tol ' which controls the pivot tolerance. UMFPACK also responds to ' spumoni ', as do the majority of the built-in sparse matrix functions.

See Also \, chol , col amd, col mmd, symmmd

References [1] Gilbert, John R., Cleve Moler, and Robert Schreiber, "Sparse Matrices in MATLAB: Design and Implementation," *SIAM Journal on Matrix Analysis and Applications*, Vol. 13, 1992, pp. 333-356.

[2] Davis, T. A., *UMFPACK Version 4.0 User Guide* (http://www.cise.ufl.edu/research/sparse/umfpack/v4.0/UserGuide.pdf), Dept. of Computer and Information Science and Engineering, Univ. of Florida, Gainesville, FL, 2002.

sprand

Purpose	Sparse uniformly distributed random matrix
Syntax	<pre>R = sprand(S) R = sprand(m, n, density) R = sprand(m, n, density, rc)</pre>
Description	R = sprand(S) has the same sparsity structure as S, but uniformly distributed random entries.
	R = sprand(m, n, density) is a random, m-by-n, sparse matrix with approximately density*m*n uniformly distributed nonzero entries (0 <= density <= 1).
	R = sprand(m, n, density, rc) also has reciprocal condition number approximately equal to rc. R is constructed from a sum of matrices of rank one.
	If rc is a vector of length lr , where $lr \leq min(m, n)$, then R has rc as its first lr singular values, all others are zero. In this case, R is generated by random plane rotations applied to a diagonal matrix with the given singular values. It has a great deal of topological and algebraic structure.
See Also	sprandn, sprandsym

Purpose	Sparse normally distributed random matrix
Syntax	<pre>R = sprandn(S) R = sprandn(m, n, density) R = sprandn(m, n, density, rc)</pre>
Description	R = sprandn(S) has the same sparsity structure as S, but normally distributed random entries with mean 0 and variance 1. R = sprandn(m, n, densi ty) is a random, m-by-n, sparse matrix with approximately densi ty*m*n normally distributed nonzero entries (0 <= densi ty <= 1). R = sprandn(m, n, densi ty, rc) also has reciprocal condition number approximately equal to rc. R is constructed from a sum of matrices of rank one. If rc is a vector of length lr, where lr <= min(m, n), then R has rc as its first lr singular values, all others are zero. In this case, R is generated by random plane rotations applied to a diagonal matrix with the given singular values. It has a great deal of topological and algebraic structure.
See Also	sprand, sprandsym

sprandsym

Purpose	Sparse symmetric random matrix
Syntax	<pre>R = sprandsym(S) R = sprandsym(n, density) R = sprandsym(n, density, rc) R = sprandsym(n, density, rc, kind)</pre>
Description	R = sprandsym(S) returns a symmetric random matrix whose lower triangle and diagonal have the same structure as S. Its elements are normally distributed, with mean 0 and variance 1.
	R = sprandsym(n, density) returns a symmetric random, n-by-n, sparse matrix with approximately density*n*n nonzeros; each entry is the sum of one or more normally distributed random samples, and (0 <= density <= 1).
	R = sprandsym(n, density, rc) returns a matrix with a reciprocal condition number equal to rc. The distribution of entries is nonuniform; it is roughly symmetric about 0; all are in $[-1, 1]$.
	If rc is a vector of length n, then R has eigenvalues rc. Thus, if rc is a positive (nonnegative) vector then R is a positive definite matrix. In either case, R is generated by random Jacobi rotations applied to a diagonal matrix with the given eigenvalues or condition number. It has a great deal of topological and algebraic structure.
	R = sprandsym(n, density, rc, kind) returns a positive definite matrix. Argument kind can be:
	• 1 to generate R by random Jacobi rotation of a positive definite diagonal matrix. R has the desired condition number exactly.
	• 2 to generate an R that is a shifted sum of outer products. R has the desired condition number only approximately, but has less structure.
	 3 to generate an R that has the same structure as the matrix S and approximate condition number 1/rc. density is ignored.
See Also	sprand, sprandn

sprank

Purpose	Structural rank
Syntax	r = sprank(A)
Description	<pre>r = sprank(A) is the structural rank of the sparse matrix A. Also known as maximum traversal, maximum assignment, and size of a maximum matching in the bipartite graph of A. Always sprank(A) >= rank(full(A)), and in exact arithmetic sprank(A) == rank(full(sprandn(A))) with probability one.</pre>
Examples	$A = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 2 & 0 & 4 & 0 \end{bmatrix};$ A = sparse(A); sprank(A) $ans = \begin{bmatrix} 2 \\ rank(full(A)) \\ ans = \begin{bmatrix} 1 \end{bmatrix}$
See Also	dmperm

sprintf

Purpose Write formatted data to a string

Syntax [s, errmsg] = sprintf(format, A, ...)

Description [s, errmsg] = sprintf(format, A, ...) formats the data in matrix A (and in any additional matrix arguments) under control of the specified format string, and returns it in the MATLAB string variable s. The sprintf function returns an error message string errmsg if an error occurred. errmsg is an empty matrix if no error occurred.

sprintf is the same as fprintf except that it returns the data in a MATLAB string variable rather than writing it to a file.

Format String

The format argument is a string containing C language conversion specifications. A conversion specification controls the notation, alignment, significant digits, field width, and other aspects of output format. The format string can contain escape characters to represent non-printing characters such as newline characters and tabs.

Conversion specifications begin with the % character and contain these optional and required elements:

- Flags (optional)
- Width and precision fields (optional)
- A subtype specifier (optional)
- Conversion character (required)

You specify these elements in the following order:

Start of conversion specification	——%–12.5e —— Conversion character
Flags	
Field width	Precision

Flags

You can control the alignment of the output using any of these optional flags.

Character	Description	Example
A minus sign (-)	Left-justifies the converted argument in its field.	%–5. 2d
A plus sign (+)	Always prints a sign character (+ or –).	%+5. 2d
Zero (0)	Pad with zeros rather than spaces.	%05. 2d

Field Width and Precision Specifications

You can control the width and precision of the output by including these options in the format string.

Character	Description	Example
Field width	A digit string specifying the minimum number of digits to be printed.	%6f
Precision	A digit string including a period (.) specifying the number of digits to be printed to the right of the decimal point.	%6. 2f

Conversion Characters

Conversion characters specify the notation of the output.

Specifier	Description
%C	Single character
%d	Decimal notation (signed)
%e	Exponential notation (using a lowercase e as in 3. 1415e+00)
%Е	Exponential notation (using an uppercase E as in 3. 1415E+00)

Specifier	Description
%f	Fixed-point notation
%g	The more compact of %e or %f, as defined in [2]. Insignificant zeros do not print.
%G	Same as %g, but using an uppercase E
%о	Octal notation (unsigned)
%s	String of characters
%u	Decimal notation (unsigned)
%x	Hexadecimal notation (using lowercase letters a-f)
%X	Hexadecimal notation (using uppercase letters A–F)

The following tables describe the nonalphanumeric characters found in format specification strings.

Escape Characters

This table lists the escape character sequences you use to specify non-printing characters in a format specification.

Character	Description
\b	Backspace
\ f	Form feed
\n	New line
\r	Carriage return
\t	Horizontal tab
$\backslash \backslash$	Backslash

Character	Description
\" or "	Single quotation mark
(two single quotes)	
%%	Percent character

Remarks The sprintf function behaves like its ANSI C language namesake with these exceptions and extensions.

- If you use sprintf to convert a MATLAB double into an integer, and the double contains a value that cannot be represented as an integer (for example, it contains a fraction), MATLAB ignores the specified conversion and outputs the value in exponential format. To successfully perform this conversion, use the fix, floor, ceil, or round functions to change the value in the double into a value that can be represented as an integer before passing it to sprintf.
- The following, non-standard subtype specifiers are supported for the conversion characters %0, %u, %x, and %X.

b	The underlying C data type is a double rather than an unsigned integer. For example, to print a double-precision value in hexadecimal, use a format like '%bx'.
t	The underlying C data type is a float rather than an unsigned integer.

For example, to print a double value in hexadecimal use the format ' %bx'

- The sprintf function is vectorized for nonscalar arguments. The function recycles the format string through the elements of A (columnwise) until all the elements are used up. The function then continues in a similar manner through any additional matrix arguments.
- If %s is used to print part of a nonscalar double argument, the following behavior occurs:

a. Successive values are printed as long as they are integers and in the range of a valid character. The first invalid character terminates the printing for

this %s specifier and is used for a later specifier. For example, pi terminates the string below and is printed using %f format.

```
Str = [65 66 67 pi];
sprintf('%s %f', Str)
ans =
ABC 3.141593
```

b. If the first value to print is not a valid character, then just that value is printed for this %s specifier using an e conversion as a warning to the user. For example, pi is formatted by %s below in exponential notation, and 65, though representing a valid character, is formatted as fixed-point (%f).

```
Str = [pi 65 66 67];
sprintf('%s %f %s', Str)
ans =
3.141593e+000 65.000000 BC
```

c. One exception is zero which is a valid character. If zero is found first, %s prints nothing and the value is skipped. If zero is found after at least one valid character, it terminates the printing for this %s specifier and is used for a later specifier.

• sprintf prints negative zero and exponents differently on some platforms, as shown in the following tables.

	Display of Negative Zero		
Platform	%e or %E	%f	%g or %G
PC	0.000000e+000	0.000000	0
SGI	0.000000e+00	0.000000	0
HP700	-0.000000e+00	-0.000000	0
Others	-0.000000e+00	-0.000000	-0

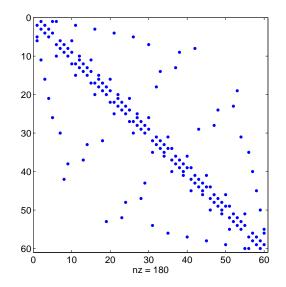
Negative Zero Printed with %e, %E, %f, %g, or %G

Exponents Printed with %e, %E, %g, or %G

Platform	Minimum Digits in Exponent	Example
PC	3	1. 23e+004
UNIX	2	1. 23e+04

You can resolve this difference in exponents by post-processing the results of sprintf. For example, to make the PC output look like that of UNIX, use

```
a = sprintf('%e', 12345.678);
if ispc, a = strrep(a, 'e+0', 'e+'); end
```


Examples

Command	Result
<pre>sprintf('%0.5g',(1+sqrt(5))/2)</pre>	1.618
sprintf('%0.5g',1/eps)	4. 5036e+15
sprintf('%15.5f',1/eps)	4503599627370496. 00000
<pre>sprintf('%d', round(pi))</pre>	3
sprintf('%s', 'hello')	hello
<pre>sprintf('The array is %dx%d.',2,3)</pre>	The array is 2x3
<pre>sprintf(' \n')</pre>	Line termination character on all platforms

See Also int2str, num2str, sscanf

References [1] Kernighan, B.W. and D.M. Ritchie, *The C Programming Language*, Second Edition, Prentice-Hall, Inc., 1988.
 [2] ANSI specification X3.159-1989: "Programming Language C," ANSI, 1430 Broadway, New York, NY 10018.

Purpose	Visualize sparsity pattern	
Syntax	<pre>spy(S) spy(S, markersize) spy(S, 'LineSpec') spy(S, 'LineSpec', markersize)</pre>	
Description	spy(S) plots the sparsity pattern of any matrix S.	
	spy(S, markersi ze), where markersi ze is an integer, plots the sparsity pattern using markers of the specified point size.	
	${\rm spy}(S, 'LineSpec')$, where Li $neSpec$ is a string, uses the specified plot marker type and color.	
	$\operatorname{spy}(S,$ ' Li <code>neSpec'</code> , <code>markersi</code> <code>ze)</code> uses the specified type, color, and size for the plot markers.	
	S is usually a sparse matrix, but full matrices are acceptable, in which case the locations of the nonzero elements are plotted.	
	Note spy replaces format +, which takes much more space to display essentially the same information.	
Examples	This example plots the 60-by-60 sparse adjacency matrix of the connectivity graph of the Buckminster Fuller geodesic dome. This matrix also represents the soccer ball and the carbon-60 molecule. B = bucky; spy(B)	

find, gplot, LineSpec, symamd, symmmd, symrcm

sqrt

Purpose	Square root
Syntax	B = sqrt(X)
Description	B = sqrt(X) returns the square root of each element of the array X. For the elements of X that are negative or complex, $sqrt(X)$ produces complex results.
Remarks	See sqrtm for the matrix square root.
Examples	<pre>sqrt((-2:2)') ans =</pre>
See Also	sqrtm

Purpose	Matrix square root
Syntax	X = sqrtm(A) [X, resnorm] = sqrtm(A) [X, alpha, condest] = sqrtm(A)
Description	$X = sqrtm(A)$ is the principal square root of the matrix A, i.e. $X^*X = A$.
	X is the unique square root for which every eigenvalue has nonnegative real part. If A has any eigenvalues with negative real parts then a complex result is produced. If A is singular then A may not have a square root. A warning is printed if exact singularity is detected.
	[X, resnorm] = $sqrtm(A)$ does not print any warning, and returns the residual, norm(A-X^2, 'fro')/norm(A, 'fro').
	[X, al pha, condest] = $sqrtm(A)$ returns a stability factor al pha and an estimate condest of the matrix square root condition number of X. The residual norm(A-X^2, 'fro')/norm(A, 'fro') is bounded approximately by n*al pha*eps and the Frobenius norm relative error in X is bounded approximately by n*al pha*condest*eps, where n = max(si ze(A)).
Remarks	If X is real, symmetric and positive definite, or complex, Hermitian and positive definite, then so is the computed matrix square root.
	Some matrices, like $X = [0 \ 1; \ 0 \ 0]$, do not have any square roots, real or complex, and sqrtm cannot be expected to produce one.
Examples	Example 1. A matrix representation of the fourth difference operator is
	X =
	5 - 4 1 0 0
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	1 - 4 0 - 4 1 0 1 -4 6 -4
	0 1 -4 0 -4 0 0 0 0 0 0 0 0 0

This matrix is symmetric and positive definite. Its unique positive definite square root, Y = sqrtm(X), is a representation of the second difference operator.

Y =				
2	- 1	- 0	- 0	- 0
- 1	2	- 1	0	- 0
0	- 1	2	- 1	0
- 0	0	- 1	2	- 1
- 0	- 0	- 0	- 1	2

Example 2. The matrix

X = 7 1015 22

has four square roots. Two of them are

Y1 =	
1.5667	1.7408
2.6112	4. 1779

and

The other two are - Y1 and - Y2. All four can be obtained from the eigenvalues and vectors of $\boldsymbol{X}.$

```
[V, D] = eig(X);
D =
0.1386 0
0 28.8614
```

The four square roots of the diagonal matrix D result from the four choices of sign in

 $\begin{array}{cccc} S &= & & & \\ & 0.\ 3723 & & 0 \\ & 0 & & 5.\ 3723 \end{array}$

All four Ys are of the form

$$Y = V*S/V$$

The sqrtmfunction chooses the two plus signs and produces Y1, even though Y2 is more natural because its entries are integers.

See Also expm, funm, logm

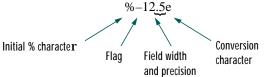
squeeze

Purpose	Remove singleton dimensions
Syntax	B = squeeze(A)
Description	B = squeeze(A) returns an array B with the same elements as A, but with all singleton dimensions removed. A singleton dimension is any dimension for which si $ze(A, dim) = 1$.
Examples	Consider the 2-by-1-by-3 array $Y = rand(2, 1, 3)$. This array has a singleton column dimension — that is, there's only one column per page.
	Y =
	Y(:,:,1) = Y(:,:,2) =
	0. 5194 0. 0346
	0. 8310 0. 0535
	Y(:,:,3) =
	0. 5297
	0. 6711
	The command Z = squeeze(Y) yields a 2-by-3 matrix:
	Z =
	0. 5194 0. 0346 0. 5297
	0. 8310 0. 0535 0. 6711
See Also	reshape, shiftdim

Purpose	Read string under format control	
Syntax		(s, format) (s, format, size) rrmsg, nextindex] = sscanf()
Description	 A = sscanf(s, format) reads data from the MATLAB string variable s, converts it according to the specified format string, and returns it in matrix A. format is a string specifying the format of the data to be read. See "Remarks" for details. sscanf is the same as fscanf except that it reads the data from a MATLAB string variable rather than reading it from a file. A = sscanf(s, format, size) reads the amount of data specified by size and converts it according to the specified format string. size is an argument that determines how much data is read. Valid options are 	
	n	Read n elements into a column vector.
	i nf	Read to the end of the file, resulting in a column vector containing the same number of elements as are in the file.
	[m, n] Read enough elements to fill an m-by-n matrix, filling	

If the matrix A results from using character conversions only and si ze is not of the form [M, N], a row vector is returned.

matrix in column order. n can be Inf. but not m.


sscanf differs from its C language namesakes scanf() and fscanf() in an important respect — it is *vectorized* in order to return a matrix argument. The format string is cycled through the file until an end-of-file is reached or the amount of data specified by si ze is read in.

[A, count, errmsg, nextindex] = sscanf(...) reads data from the MATLAB string variable s, converts it according to the specified format string, and returns it in matrix A. count is an optional output argument that returns the number of elements successfully read. errmsg is an optional output argument that returns an error message string if an error occurred or an empty matrix if an error did not occur. nexti ndex is an optional output argument specifying one more than the number of characters scanned in s.

Remarks

When MATLAB reads a specified file, it attempts to match the data in the file to the format string. If a match occurs, the data is written into the matrix in column order. If a partial match occurs, only the matching data is written to the matrix, and the read operation stops.

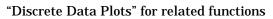
The format string consists of ordinary characters and/or conversion specifications. Conversion specifications indicate the type of data to be matched and involve the character %, optional width fields, and conversion characters, organized as shown below:

Add one or more of these characters between the % and the conversion character.

An asterisk (*)	Skip over the matched value if the value is matched but not stored in the output matrix.	
A digit string	Maximum field width.	
A letter	The size of the receiving object; for example, h for short as in %hd for a short integer, or 1 for long as in %l d for a long integer or %l g for a double floating-point number.	

Valid conversion characters are as shown.

%с	Sequence of characters; number specified by field width
%d	Decimal numbers
%e, %f, %g	Floating-point numbers
%i	Signed integer
%о	Signed octal integer
%s	A series of non-whitespace characters


	%u	Signed decimal integer
	%x	Signed hexadecimal integer
	[]	Sequence of characters (scanlist)
l		ent read may use several MATLAB matrix elements, each er. Use %c to read space characters, or %s to skip all white
1	natrix to be numerio	d numeric conversion specifications cause the resulting c and any characters read to appear as their ASCII values, ATLAB matrix element.
		n about format strings, refer to the scanf() and fscanf() uage reference manual.
Examples	The statements	
	s = '2.7183 3. A = sscanf(s,'%	
(create a two-elemen	t vector containing poor approximations to e and pi .
See Also	eval, sprintf, text	read

stairs

Purpose	Stairstep plot
Syntax	<pre>stairs(Y) stairs(X, Y) stairs(, LineSpec) [xb, yb] = stairs(Y) [xb, yb] = stairs(X, Y)</pre>
Description	Stairstep plots are useful for drawing time-history plots of digitally sampled data systems.
	stairs(Y) draws a stairstep plot of the elements of Y. When Y is a vector, the <i>x</i> -axis scale ranges from 1 to si $ze(Y)$. When Y is a matrix, the <i>x</i> -axis scale ranges from 1 to the number of rows in Y.
	stairs(X, Y) plots X versus the columns of Y. X and Y are vectors of the same size or matrices of the same size. Additionally, X can be a row or a column vector, and Y a matrix with $l ength(X)$ rows.
	stairs(, LineSpec) specifies a line style, marker symbol, and color for the plot (see LineSpec for more information).
	[xb, yb] = stairs(Y) and $[xb, yb] = stairs(x, Y)$ do not draw graphs, but return vectors xb and yb such that $plot(xb, yb)$ plots the stairstep graph.
Examples	Create a stairstep plot of a sine wave.
	x = 0:.25:10; stairs(x, sin(x))

start

Purpose	Start timer(s) running	
Syntax	<pre>start(obj)</pre>	
Description	start(obj) starts the timer running, represented by the timer object, obj. If obj is an array of timer objects, start starts all the timers. Use the timer function to create a timer object.	
	start sets the Runni ng property of the timer object, obj , to ' on' , initiates Ti merFcn callbacks, and executes the <code>StartFcn</code> callback.	
	The timer stops running if one of the following conditions apply:	
	• The number of TimerFcn callbacks specified in TasksToExecute have been executed.	
	• The stop(obj) command is issued.	
	• An error occurred while executing a TimerFcn callback.	
See Also	timer, stop	

Purpose	Start timer(s) running at the specified time
Syntax	<pre>startat(obj,time) startat(obj,S) startat(obj,S,pivotyear) startat(obj,Y,M,D) startat(obj,[Y,M,D]) startat(obj,Y,M,D,H,MI,S) startat(obj,[Y,M,D,H,MI,S])</pre>
Description	startat(obj, time) starts the timer running, represented by the timer object obj , at the time specified by the serial date number time. If obj is an array of timer objects, startat starts all the timers running at the specified time. Use the timer function to create the timer object.
	startat sets the Runni ng property of the timer object, obj , to ' on' , initiates Ti merFcn callbacks, and executes the StartFcn callback.
	The serial date number, time, indicates the number of days that have elapsed since 1-Jan-0000 (starting at 1). See datenum for additional information about serial date numbers.
	startat(obj, S) starts the timer running at the time specified by the date string S. The date string must use date format 0, 1, 2, 6, 13, 14, 15, 16, or 23, as defined by the datestr function. Date strings with two-character years are interpreted to be within the 100 years centered around the current year.
	startat(obj, S, pivotyear) uses the specified pivot year as the starting year of the 100-year range in which a two-character year resides. The default pivot year is the current year minus 50 years.
	startat(obj, Y, M, D) startat(obj, [Y, M, D]) start the timer at the year (Y), month (M), and day (D) specified. Y, M, and D must be arrays of the same size (or they can be a scalar).
	startat(obj, Y, M, D, H, M, S) startat(obj, [Y, M, D, H, M, S]) start the timer at the year (Y), month (M), day(D), hour(H), minute(M), and second(S) specified. Y, M, D, H, M, and S must be arrays of the same size (or they can be a scalar). Values outside the normal range of each array are automatically carried to the next unit (for example

startat

	month values greater than 12 are carried to years). Month values less than 1 are set to be 1; all other units can wrap and have valid negative values.
	The timer stops running if one of the following conditions apply:
	• The number of TimerFcn callbacks specified in TasksToExecute have been executed.
	• The stop(obj) command is issued.
	• An error occurred while executing a TimerFcn callback.
Example	This example uses a timer object to execute a function at a specified time.
	t1=timer('TimerFcn','disp(''it is 10 o''''clock'')'); startat(t1,'10:00:00');
	This example uses a timer to display a message when an hour has elapsed.
	<pre>t2=timer('TimerFcn','disp(''It has been an hour now.'')'); startat(t2, now+1/24);</pre>
See Also	datenum, datestr, now, timer, start, stop

PurposeStandard deviationSyntaxs = std(X)
s = std(X, fl ag)
s = std(X, fl ag, di m)

Definition There are two common textbook definitions for the standard deviation s of a data vector X.

(1)
$$s = \left(\frac{1}{n-1}\sum_{i=1}^{n} (x_i - \bar{x})^2\right)^{\frac{1}{2}}$$

(2) $s = \left(\frac{1}{n}\sum_{i=1}^{n} (x_i - \bar{x})^2\right)^{\frac{1}{2}}$

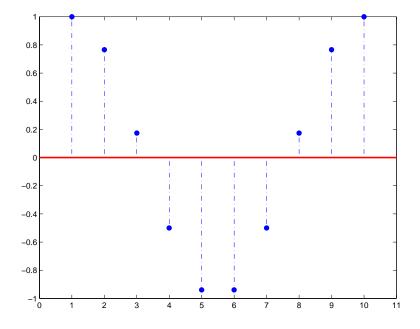
where

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

and *n* is the number of elements in the sample. The two forms of the equation differ only in n-1 versus *n* in the divisor.

Description

s = std(X), where X is a vector, returns the standard deviation using (1) above. If X is a random sample of data from a normal distribution, s^2 is the best *unbiased* estimate of its variance.

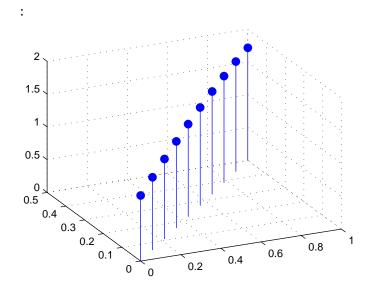

If X is a matrix, std(X) returns a row vector containing the standard deviation of the elements of each column of X. If X is a multidimensional array, std(X) is the standard deviation of th elements along the first nonsingleton dimension of X.

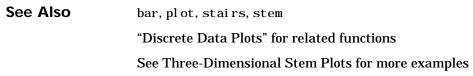
s = std(X, flag) for flag = 0, is the same as std(X). For flag = 1, std(X, 1) returns the standard deviation using (2) above, producing the second moment of the sample about its mean.

	s = std(X, flag, dim) computes the standard deviations along the dimension of X specified by scalar dim.
Examples	For matrix X
	X =
	1 5 9
	7 15 22
	s = std(X, 0, 1)
	S =
	4. 2426 7. 0711 9. 1924
	s = std(X, 0, 2)
	S =
	4.000
	7. 5056
See Also	corrcoef, cov, mean, medi an

Purpose	Plot discrete sequence data
Syntax	<pre>stem(Y) stem(X, Y) stem(, 'fill') stem(, LineSpec) h = stem()</pre>
Description	A two-dimensional stem plot displays data as lines extending from a baseline along the <i>x</i> -axis. A circle (the default) or other marker whose <i>y</i> -position represents the data value terminates each stem.
	stem(Y) plots the data sequence Y as stems that extend from equally spaced and automatically generated values along the <i>x</i> -axis. When Y is a matrix, stem plots all elements in a row against the same <i>x</i> value.
	stem(X, Y) plots X versus the columns of Y. X and Y are vectors or matrices of the same size. Additionally, X can be a row or a column vector and Y a matrix with $length(X)$ rows.
	$stem(\ldots, 'fill')$ specifies whether to color the circle at the end of the stem.
	stem(, Li neSpec) specifies the line style, marker symbol, and color for the stem and top marker (the base line is not affected). See Li neSpec for more information.
	h = stem() returns handles to three line graphics objects:
	• h(1) – the marker symbol at the top of each stem
	• h(2) – the stem line
	• h(3) – the base line
Examples	<pre>Create a stem plot of a circular function. y = linspace(0, 2*pi, 10); h = stem(cos(y), 'fill', ''); set(h(3), 'Color', 'r', 'LineWidth', 2) % Set base line properties axis ([0 11 -1 1])</pre>

stem


See Also


bar, plot, stairs, stem3

"Discrete Data Plots" for related functions.

See Two Dimensional Stem Plots for more examples using the ${\tt stem}$ function.

Purpose	Plot three-dimensional discrete sequence data
Syntax	<pre>stem3(Z) stem3(X, Y, Z) stem3(, 'fill') stem3(, LineSpec) h = stem3()</pre>
Description	Three-dimensional stem plots display lines extending from the <i>xy</i> -plane. A circle (the default) or other marker symbol whose <i>z</i> -position represents the data value terminates each stem.
	stem3(Z) plots the data sequence Z as stems that extend from the <i>xy</i> -plane. <i>x</i> and <i>y</i> are generated automatically. When Z is a row vector, stem3 plots all elements at equally spaced <i>x</i> values against the same <i>y</i> value. When Z is a column vector, stem3 plots all elements at equally spaced <i>y</i> values against the same <i>x</i> value.
	stem3(X, Y, Z) plots the data sequence Z at values specified by X and Y. X, Y, and Z must all be vectors or matrices of the same size.
	${\tt stem3}(\ldots, '{\tt fill'})$ specifies whether to color the interior of the circle at the end of the stem.
	stem3(, Li neSpec) specifies the line style, marker symbol, and color for the stems. See Li neSpec for more information.
	h = stem3() returns handles to line graphics objects.
Examples	<pre>Create a three-dimensional stem plot to visualize a function of two variables. X = linspace(0, 1, 10); Y = X. /2; Z = sin(X) + cos(Y); stem3(X, Y, Z, 'fill') view(-25, 30)</pre>

Purpose	Stop timer(s)
Syntax	<pre>stop(obj)</pre>
Description	top(obj) stops the timer, represented by the timer object, obj . If obj is an array of timer objects, the top function stops them all. Use the $timer$ function to create a timer object.
	The stop function sets the Runni ng property of the timer object, obj , to ' off' , halts further TimerFcn callbacks, and executes the StopFcn callback.
See Also	timer, start

stopasync

Purpose	Stop asynchronous read and write operations	
Syntax	<pre>stopasync(obj)</pre>	
Arguments	obj A serial port object or an array of serial port objects.	
Description	${\tt stopasync(obj)}$ stops any asynchronous read or write operation that is in progress for ${\tt obj}$.	
Remarks	You can write data asynchronously using the fprintf or fwrite functions. You can read data asynchronously using the readasync function, or by configuring the ReadAsyncMode property to continuous. In-progress asynchronous operations are indicated by the TransferStatus property.	
	If obj is an array of serial port objects and one of the objects cannot be stopped, the remaining objects in the array are stopped and a warning is returned. After an object stops:	
	 Its TransferStatus property is configured to i dl e. Its ReadAsyncMode property is configured to manual. The data in its output buffer is flushed. 	
	Data in the input buffer is not flushed. You can return this data to the MATLAB workspace using any of the synchronous read functions. If you execute the readasync function, or configure the ReadAsyncMode property to continuous, then the new data is appended to the existing data in the input buffer.	
See Also	Functions fprintf, fwrite, readasync	
	Properties ReadAsyncMode, TransferStatus	

Purpose	Convert string to double-precision value
Syntax	<pre>x = str2double('str') X = str2double(C)</pre>
Description	X = str2double('str') converts the string str, which should be an ASCII character representation of a real or complex scalar value, to the MATLAB double-precision representation. The string may contain digits, a comma (thousands separator), a decimal point, a leading + or - sign, an e preceeding a power of 10 scale factor, and an i for a complex unit. If <i>str</i> does not represent a valid scalar value, str2double returns NaN. X = str2double(C) converts the strings in the cell array of strings C to
Examples	double-precision. The matrix X returned will be the same size as C. Here are some valid str2doubl e conversions.
-nampios	<pre>str2doubl e(' 123. 45e7') str2doubl e(' 123 + 45i ') str2doubl e(' 3. 14159') str2doubl e(' 2. 7i - 3. 14') str2doubl e({' 2. 71' ' 3. 1415'}) str2doubl e({' 1, 200. 34'})</pre>
See Also	char, hex2num, num2str, str2num

str2func

Purpose	Constructs a function handle from a function name string
Syntax	<pre>fhandle = str2func('str')</pre>
Description	${\tt str2func('str')}$ constructs a function handle, <code>fhandle</code> , for the function named in the string, <code>'str'</code> .
	You can create a function handle using either the @function syntax or the str2func command. You can also perform this operation on a cell array of strings. In this case, an array of function handles is returned.
Examples	To create a function handle from the function name, ' humps'
	<pre>fhandle = str2func('humps')</pre>
	fhandl e =
	@humps
	To create an array of function handles from a cell array of function names
	<pre>fh_array = str2func({'sin' 'cos' 'tan'})</pre>
	fh_array =
	@sin @cos @tan
See Also	functi on_handl e, func2str, functi ons

Purpose	Form a blank	padded characte	er matrix	from strings
Syntax	S = str2mat(T1, T2, T3,)		
Description	S = str2mat(T1, T2, T3,) forms the matrix S containing the text strings T1, T2, T3, as rows. The function automatically pads each string with blanks in order to form a valid matrix. Each text parameter, Ti, can itself be a string matrix. This allows the creation of arbitrarily large string matrices. Empty strings are significant.			
Remarks		s from strvcat vcat, empty str		npty strings produce blank rows in the gnored.
Examples	x = str2ma	at (' 36842' , ' 39	751','38	453' , ' 90307') ;
	whos x Name	Si ze	Bytes	Class
	х	4x5	40	char array
	x(2, 3)			
	ans =			
	7			
See Also	char, strvcat			

str2num

Purpose	String concatenation
Syntax	t = strcat(s1, s2, s3,)
Description	t = strcat(s1, s2, s3,) horizontally concatenates corresponding rows of the character arrays $s1$, $s2$, $s3$, etc. All input arrays must have the same number of rows (or any can be a single string). When the inputs are all character arrays, the output is also a character array.
	When any of the inputs is a cell array of strings, $strcat$ returns a cell array of strings formed by concatenating corresponding elements of $s1$, $s2$, etc. The inputs must all have the same size (or any can be a scalar). Any of the inputs can also be character arrays.
	Trailing spaces in character array inputs are ignored and do not appear in the output. This is not true for inputs that are cell arrays of strings. Use the concatenation syntax [s1 s2 s3] to preserve trailing spaces.
Remarks	strcat and matrix operation are different for strings that contain trailing spaces:
	<pre>a = 'hello ' b = 'goodbye' strcat(a, b) ans = hellogoodbye [a b] ans = hello goodbye</pre>
Examples	Given two 1-by-2 cell arrays a and b,
	a = b = 'abcde' 'fghi' 'jkl' 'mn'
	the command $t = strcat(a, b)$ yields:
	t = 'abcdej kl ' 'fghi mn'
	Given the 1-by-1 cell array $c = \{ (Q') \}$, the command $t = strcat(a, b, c)$ yields:

t = 'abcdej kl Q' 'fghi mnQ'

See Also

strvcat, cat, cellstr

strcmp

Purpose	Compare strings	
Syntax	<pre>k = strcmp('str1','str2') TF = strcmp(S,T)</pre>	
Description	-	npares the strings str1 and str2 and returns ntical, and logical false (0) otherwise.
	array TF the same size as S and T of match, and 0 otherwise. S and T	S or T is a cell array of strings, returns an containing 1 for those elements of S and T that must be the same size (or one can be a scalar aracter array with the right number of rows.
Remarks	convention. In addition, the stre	strcmp is not the same as the C language mp function is case sensitive; any leading and rings are explicitly included in the
	strcmp is intended for compariso numeric data, strcmp returns 0.	n of character data. When used to compare
Examples	<pre>strcmp('Yes','No') = 0 strcmp('Yes','Yes') = 1</pre>	
	A =	
		SIMULINK' The MathWorks'
	B =	
		Real Time Workshop' The MathWorks'
	C = 'Signal Processing' 'MATLAB'	'Image Processing' 'SIMULINK'
	strcmp(A, B) ans = 0 0	

```
1 1
strcmp(A, C)
ans =
0 0
0 0
```

See Also

strcmpi, strncmpi, strmatch, strfind, findstr, regexp, regexpi, regexprep

strcmpi

Purpose	Compare strings ignoring case
Syntax	strcmpi (str1, str2) strcmpi (S, T)
Description	strcmpi (str1, str2) returns 1 if strings $str1$ and $str2$ are the same except for case and 0 otherwise.
	strcmpi (S, T) when either S or T is a cell array of strings, returns an array the same size as S and T containing 1 for those elements of S and T that match except for case, and 0 otherwise. S and T must be the same size (or one can be a scalar cell). Either one can also be a character array with the right number of rows.
Remarks	strcmpi is intended for comparison of character data. When used to compare numeric data, strcmpi returns 0.
	strcmpi supports international character sets.
See Also	strcmp, strncmpi, strncmp, strmatch, strfind, findstr, regexp, regexpi, regexprep

stream2

Purpose	Compute 2-D stream line data
Syntax	<pre>XY = stream2(x, y, u, v, startx, starty) XY = stream2(u, v, startx, starty) XY = stream2(, options)</pre>
Description	XY = stream2(x, y, u, v, startx, starty) computes stream lines from vector data u and v. The arrays x and y define the coordinates for u and v and must be monotonic and 2-D plaid (such as the data produced by meshgrid). startx and starty define the starting positions of the stream lines. The section "Starting Points for Stream Plots" in Visualization Techniques provides more information on defining starting points.
	The returned value XY contains a cell array of vertex arrays.
	XY = stream2(u, v, startx, starty) assumes the arrays x and y are defined as $[x, y] = meshgrid(1:n, 1:m)$ where $[m, n] = size(u)$.
	XY = stream2(, options) specifies the options used when creating the stream lines. Define options as a one or two element vector containing the step size or the step size and the maximum number of vertices in a stream line:
	[stepsize]
	or
	[stepsize, max_number_vertices]
	If you do not specify a value, MATLAB uses the default:
	• stepsize = 0.1 (one tenth of a cell)
	• maximum number of vertices = 10000
	Use the streaml i ne command to plot the data returned by stream2.
Examples	This example draws 2-D stream lines from data representing air currents over regions of North America.
	<pre>load wind [sx, sy] = meshgrid(80, 20: 10: 50); streamline(stream2(x(:,:,5), y(:,:,5), u(:,:,5), v(:,:,5), sx, sy));</pre>

See Alsoconeplot, stream3, streaml i ne"Volume Visualization" for related functionsSpecifying Starting Points for Stream Plots for related information

stream3

Purpose	Compute 3-D stream line data
Syntax	XYZ = stream3(X, Y, Z, U, V, W, startx, starty, startz) XYZ = stream3(U, V, W, startx, starty, startz)
Description	XYZ = stream3(X, Y, Z, U, V, W, startx, starty, startz) computes stream lines from vector data U, V, W. The arrays X, Y, Z define the coordinates for U, V, W and must be monotonic and 3-D plaid (such as the data produced by meshgri d). startx, starty, and startz define the starting positions of the stream lines. The section "Starting Points for Stream Plots" in Visualization Techniques provides more information on defining starting points.
	The returned value XYZ contains a cell array of vertex arrays.
	$\begin{array}{llllllllllllllllllllllllllllllllllll$
	XYZ = stream3(, options) specifies the options used when creating the stream lines. Define options as a one or two element vector containing the step size or the step size and the maximum number of vertices in a stream line:
	[stepsize]
	or
	[stepsize, max_number_vertices]
	If you do not specify values, MATLAB uses the default:
	 stepsize = 0.1 (one tenth of a cell) maximum number of vertices = 10000
	Use the <code>streaml</code> i ne command to plot the data returned by <code>stream3</code> .
Examples	This example draws 3-D stream lines from data representing air currents over regions of North America.
	<pre>load wind [sx sy sz] = meshgrid(80, 20: 10: 50, 0: 5: 15); streamline(stream3(x, y, z, u, v, w, sx, sy, sz)) view(3)</pre>

See Alsoconeplot, stream2, streaml i ne"Volume Visualization" for related functionsSpecifying Starting Points for Stream Plots for related information

streamline

Purpose	Draw stream lines from 2-D or 3-D vector data
Syntax	<pre>h = streamline(X, Y, Z, U, V, W, startx, starty, startz) h = streamline(U, V, W, startx, starty, startz) h = streamline(XYZ) h = streamline(X, Y, U, V, startx, starty) h = streamline(U, V, startx, starty) h = streamline(XY) h = streamline(, options)</pre>
Description	h = streaml i ne(X, Y, Z, U, V, W, startx, starty, startz) draws stream lines from 3-D vector data U, V, W. The arrays X, Y, Z define the coordinates for U, V, W and must be monotonic and 3-D plaid (such as the data produced by meshgri d). startx, starty, startz define the starting positions of the stream lines. The section "Starting Points for Stream Plots" in Visualization Techniques provides more information on defining starting points.
	The output argument h contains a vector of line handles, one handle for each stream line.
	h = streamline(U, V, W, startx, starty, startz) assumes the arrays X, Y, and Z are defined as [X, Y, Z] = meshgrid(1: N, 1: M, 1: P) where [M, N, P] = size(U).
	h = streaml i ne(XYZ) assumes XYZ is a precomputed cell array of vertex arrays (as produced by stream3).
	h = streaml i ne(X, Y, U, V, startx, starty) draws stream lines from 2-D vector data U, V. The arrays X, Y define the coordinates for U, V and must be monotonic and 2-D plaid (such as the data produced by meshgri d). startx and starty define the starting positions of the stream lines. The output argument h contains a vector of line handles, one handle for each stream line.
	h = streamline(U, V, startx, starty) assumes the arrays X and Y are defined as [X, Y] = meshgrid(1: N, 1: M) where [M, N] = size(U).
	h = streamline(XY) assumes XY is a precomputed cell array of vertex arrays (as produced by stream2).

	streaml i ne(, options) specifies the options used when creating the stream lines. Define options as a one or two element vector containing the step size or the step size and the maximum number of vertices in a stream line:
	[stepsize]
	or
	[stepsize, max_number_vertices]
	If you do not specify values, MATLAB uses the default:
	• stepsize = 0.1 (one tenth of a cell)
	• maximum number of vertices = 1000
Examples	This example draws stream lines from data representing air currents over a region of North America. Loading the wind data set creates the variables x, y, z, u, v, and w in the MATLAB workspace.
	The plane of stream lines indicates the flow of air from the west to the east (the x direction) beginning at $x = 80$ (which is close to the minimum value of the x coordinates). The y and z coordinate starting points are multivalued and approximately span the range of these coordinates. meshgri d generates the starting positions of the stream lines.
	<pre>load wind [sx, sy, sz] = meshgrid(80, 20: 10: 50, 0: 5: 15); h = streamline(x, y, z, u, v, w, sx, sy, sz); set(h, 'Color', 'red') view(3)</pre>
See Also	coneplot, stream2, stream3, streamparticles
	"Volume Visualization" for related functions
	Specifying Starting Points for Stream Plots for related information
	Stream Line Plots of Vecotr Data for another example

streamparticles

Purpose	Display stream particles
Syntax	<pre>streamparticles(vertices) streamparticles(vertices, n) streamparticles(, 'PropertyName', PropertyValue,) streamparticles(line_handle,) h = streamparticles()</pre>
Description	streamparticles(vertices) draws stream particles of a vector field. Stream particles are usually represented by markers and can show the position and velocity of a streamline. vertices is a cell array of 2-D or 3-D vertices (as if produced by stream2 or stream3).
	streamparticles(vertices, n) uses n to determine how many stream particles to draw. The ParticleAl ignment property controls how n is interpreted.
	• If Parti cl eAl i gnment is set to off (the default) and n is greater than 1, then approximately n particles are drawn evenly spaced over the streamline vertices.
	If n is less than or equal to 1, n is interpreted as a fraction of the original stream vertices; for example, if n is 0. 2, approximately 20% of the vertices are used.
	n determines the upper bound for the number of particles drawn. Note that the actual number of particles may deviate from n by as much as a factor of 2.
	• If Parti cl eAl i gnment is on, n determines the number of particles on the streamline having the most vertices and sets the spacing on the other streamlines to this value. The default value is $n = 1$.
	streamparti cl es(, ' <i>PropertyName</i> ', PropertyVal ue,) controls the stream particles using named properties and specified values. Any unspecified properties have default values. MATLAB ignores the case of property names.
	Stream Particle Properties Ani mate – Stream particle motion [non-negative integer]
	The number of times to animate the stream particles. The default is 0, which does not animate. Inf animates until you enter ctrl-c .

FrameRate - Animation frames per second [non-negative integer]

This property specifies the number of frames per second for the animation. Inf, the default draws the animation as fast as possible. Note that speed of the animation may be limited by the speed of the computer. In such cases, the value of FrameRate can not necessarily be achieved.

Parti cl eAl i gnment – Align particles with stream lines [on | {off}]

Set this property to on to draw particles at the beginning of each the stream line. This property controls how streamparticles interprets the argument n (number of stream particles).

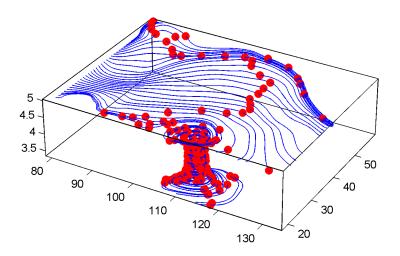
Stream particles are line objects. In addition to stream particle properties, you can specify any line object property, such as Marker and EraseMode. streamparticles sets the following line properties when called.

Line Property	Value Set by streamparticles
EraseMode	xor
Li neStyl e	none
Marker	0
MarkerEdgeColor	none
MarkerFaceColor	red

You can override any of these properties by specifying a property name and value as arguments to streamparticles. For example, this statement uses RGB values to set the MarkerFaceCol or to medium gray:

```
streamparticles(vertices, 'MarkerFaceColor', [.5.5])
```

streamparti cl es (l i ne_handl e, ...) uses the line object identified by l i ne_handl e to draw the stream particles.


 $h \, = \, streamparticles(\ldots) \,$ returns a vector of handles to the line objects it creates.

Examples This example combines stream lines with stream particle animation. The interpstreamspeed function determines the vertices along the stream lines

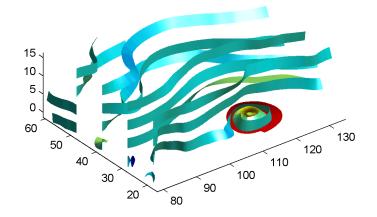
where stream particles will be drawn during the animation, thereby controlling the speed of the animation. Setting the axes DrawMode property to fast provides faster rendering.

```
load wind
[sx sy sz] = meshgrid(80, 20: 1: 55, 5);
verts = stream3(x, y, z, u, v, w, sx, sy, sz);
sl = streamline(verts);
iverts = interpstreamspeed(x, y, z, u, v, w, verts, .025);
axis tight; view(30, 30); daspect([1 1 .125])
camproj perspective; camva(8)
set(gca, 'DrawMode', 'fast')
box on
streamparticles(iverts, 35, 'animate', 10, 'ParticleAlignment', 'on'
)
```

The following picture is a static view of the animation.

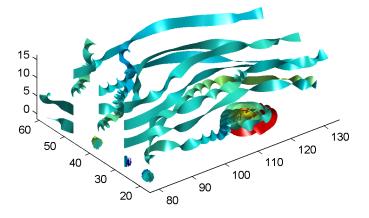
This example uses the stream lines in the z = 5 plane to animate the flow along these lines with steamparticles.

```
load wind
daspect([1 1 1]); view(2)
[verts averts] = streamslice(x, y, z, u, v, w, [], [], [5]);
```

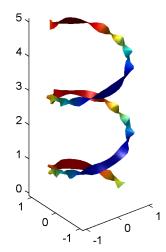

```
sl = streamline([verts averts]);
axis tight off;
set(sl, 'Visible', 'off')
iverts = interpstreamspeed(x, y, z, u, v, w, verts, .05);
set(gca, 'DrawMode', 'fast', 'Position', [0 0 1 1], 'ZLim', [4.9 5.1])
set(gcf, 'Color', 'black')
streamparticles(iverts, 200, ...
'Animate', 100, 'FrameRate', 40, ...
'MarkerSize', 10, 'MarkerFaceColor', 'yellow')
See Also interpstreamspeed, stream3, streamline
"Volume Visualization" for related functions
Creating Stream Particle Animations for more details
Specifying Starting Points for Stream Plots for related information
```

streamribbon

Purpose	Creates a 3-D stream ribbon plot
Syntax	<pre>streamribbon(X, Y, Z, U, V, W, startx, starty, startz) streamribbon(U, V, W, startx, starty, startz) streamribbon(vertices, X, Y, Z, cav, speed) streamribbon(vertices, twistangle) streamribbon(, width) h = streamribbon()</pre>
Description	streamri bbon(X, Y, Z, U, V, W, startx, starty, startz) draws stream ribbons from vector volume data U, V, W. The arrays X, Y, Z define the coordinates for U, V, W and must be monotonic and 3-D plaid (as if produced by meshgri d). startx, starty, and startz define the starting positions of the stream ribbons at the center of the ribbons. The section "Starting Points for Stream Plots" in Visualization Techniques provides more information on defining starting points.
	The twist of the ribbons is proportional to the curl of the vector field. The width of the ribbons is calculated automatically.
	Generally, you should set the DataAspectRatio (daspect) before calling streamribbon.
	streamri bbon(U, V, W, startx, starty, startz) assumes X, Y, and Z are determined by the expression:
	[X, Y, Z] = meshgrid(1: n, 1: m, 1: p)
	where $[m, n, p] = si ze(U)$.
	streamri bbon(verti ces, X, Y, Z, cav, speed) assumes precomputed streamline vertices, curl angular velocity, and flow speed. verti ces is a cell array of stream line vertices (as produced by stream3). X, Y, Z, cav, and speed are 3-D arrays.
	${\tt streamribbon}({\tt vertices},{\tt cav},{\tt speed})$ assumes X, Y, and Z are determined by the expression:
	$[X \ Y \ Z] = \text{mesharid}(1:n \ 1:m \ 1:n)$

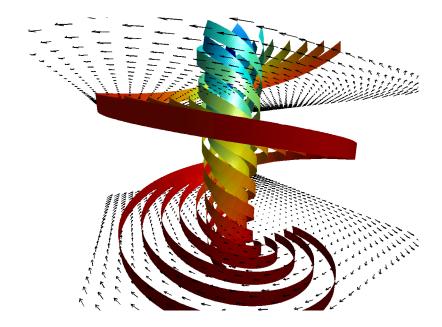

[X, Y, Z] = meshgrid(1:n, 1:m, 1:p)

```
where [m, n, p] = size(cav)
                    streamribbon(vertices, twistangle) uses the cell array of vectors
                    twi stangle for the twist of the ribbons (in radians). The size of each
                    corresponding element of vertices and twistangle must be equal.
                    streamribbon(..., width) sets the width of the ribbons to width.
                    h = streamribbon(...) returns a vector of handles (one per start point) to
                    surface objects.
Examples
                    This example uses stream ribbons to indicate the flow in the wind data set.
                    Inputs include the coordinates, vector field components, and starting location
                    for the stream ribbons.
                       load wind
                       [sx sy sz] = meshgrid(80, 20: 10: 50, 0: 5: 15);
                       daspect([1 1 1])
                       streamribbon(x, y, z, u, v, w, sx, sy, sz);
                       %-----Define viewing and lighting
                       axis tight
                       shading interp;
                       view(3);
                       camlight; lighting gouraud
```



This example uses precalculated vertex data (stream3), curl average velocity (curl), and speed ($\sqrt{u^2 + v^2 + w^2}$). Using precalculated data enables you to use values other than those calculated from the single data source. In this case, the speed is reduced by a factor of 10 compared to the previous example.

```
load wind
[sx sy sz] = meshgrid(80, 20: 10: 50, 0: 5: 15);
daspect([1 1 1])
verts = stream3(x, y, z, u, v, w, sx, sy, sz);
cav = curl(x, y, z, u, v, w);
spd = sqrt(u. ^2 + v. ^2 + w. ^2). *. 1;
streamribbon(verts, x, y, z, cav, spd);
%-----Define viewing and lighting
axis tight
shading interp
view(3)
camlight; lighting gouraud
```


This example specifies a twist angle for the stream ribbon.


```
t = 0:.15:15;
verts = {[cos(t)' sin(t)' (t/3)']};
twistangle = {cos(t)'};
daspect([1 1 1])
streamribbon(verts, twistangle);
%-----Define viewing and lighting
axis tight
shading interp;
view(3);
camlight; lighting gouraud
```


This example combines cone plots (conepl ot) and stream ribbon plots in one graph.

```
%-----Define 3-D arrays x, y, z, u, v, w
xmin = -7; xmax = 7;
ymin = -7; ymax = 7;
zmin = -7; zmax = 7;
x = linspace(xmin, xmax, 30);
y = linspace(ymin, ymax, 20);
z = linspace(zmin, zmax, 20);
[x y z] = meshgrid(x, y, z);
u = y; v = -x; w = 0*x+1;
daspect([1 1 1]);
[cx cy cz] = meshgrid(linspace(xmin, xmax, 30), ...
   linspace(ymin, ymax, 30), [-3 4]);
h = \text{coneplot}(x, y, z, u, v, w, cx, cy, cz, 'quiver');
set(h, 'color', 'k');
%-----Plot two sets of streamribbons
[sx sy sz] = meshgrid([-1 0 1], [-1 0 1], -6);
streamribbon(x, y, z, u, v, w, sx, sy, sz);
[sx sy sz] = meshgrid([1:6], [0], -6);
streamribbon(x, y, z, u, v, w, sx, sy, sz);
```

```
%-----Define viewing and lighting
shading interp
view(-30,10) ; axis off tight
camproj perspective; camva(66); camlookat;
camdolly(0,0,.5,'fixtarget')
camlight
```

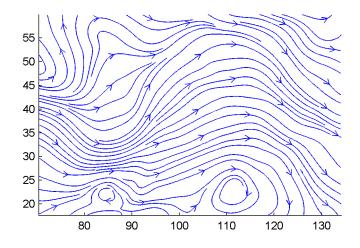


```
See alsocurl, streamtube, streaml i ne, stream3"Volume Visualization" for related functionsDisplaying Curl with Stream Ribbons for another exampleSpecifying Starting Points for Stream Plots for related information
```

streamslice

Purpose	Draws stream lines in slice planes
Syntax	<pre>streamslice(X, Y, Z, U, V, W, startx, starty, startz) streamslice(U, V, W, startx, starty, startz) streamslice(X, Y, U, V) streamslice(U, V) streamslice(, density) streamslice(, 'arrowmode') streamslice(, 'method') h = streamslice() [vertices arrowvertices] = streamslice()</pre>
Description	streamslice(X, Y, Z, U, V, W, startx, starty, startz) draws well spaced streamlines (with direction arrows) from vector data U, V, Win axis aligned x-, y-, z-planes at the points in the vectors startx, starty, startz. (The section "Starting Points for Stream Plots" in Visualization Techniques provides more information on defining starting points.) The arrays X, Y, Z define the coordinates for U, V, W and must be monotonic and 3-D plaid (as if produced by meshgrid). U, V, W must be m-by-n-by-p volume arrays. You should not assumed that the flow is parallel to the slice plane. For example, in a stream slice at a constant z, the z component of the vector field, W, is ignored when calculating the streamlines for that plane. Stream slices are useful for determining where to start stream lines, stream tubes, and stream ribbons. streamslice(U, V, W, startx, starty, startz) assumes X, Y, and Z are determined by the expression: [X, Y, Z] = meshgrid(1: n, 1: m, 1: p) where $[m, n, p] = size(U)$. streamslice(X, Y, U, V) draws well spaced stream lines (with direction arrows) from vector volume data U, V. The arrays X, Y define the coordinates for U, V and must be monotonic and 2-D plaid (as if produced by meshgrid). streamslice(U, V) assumes X, Y, and Z are determined by the expression: [X, Y, Z] = meshgrid(1: n, 1: m, 1: p)

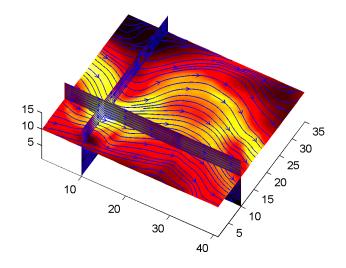
```
where [m, n, p] = size(U)
                     streamslice(\ldots, density) modifies the automatic spacing of the stream
                     lines. densi ty must be greater than 0. The default value is 1; higher values
                     produce more stream lines on each plane. For example, 2 produces
                     approximately twice as many stream lines, while 0.5 produces approximately
                     half as many.
                     streamslice(..., 'arrowsmode') determines if direction arrows are present
                     or not, arrowmode can be:


    arrows – draw direction arrows on the streamlines (default)

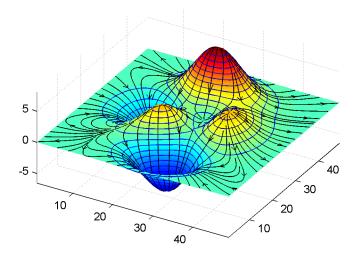
    noarrows – does not draw direction arrows

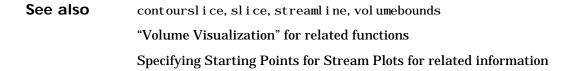
                     streamslice(..., 'method') specifies the interpolation method to use. method
                     can be:
                     • linear – linear interpolation (default)
                     • cubi c – cubic interpolation

    nearest – nearest neighbor interpolation

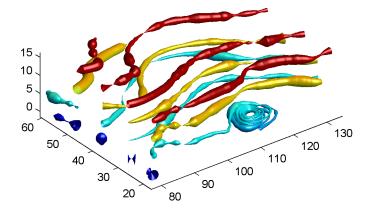

                     See interp3 for more information interpolation methods.
                     h = streamslice(...) returns a vector of handles to the line objects created.
                     [vertices arrowvertices] = streamslice(...) returns two cell arrays of
                     vertices for drawing the stream lines and the arrows. You can pass these values
                     to any of the stream line drawing functions (streaml i ne, streamri bbon,
                     streamtube)
Examples
                     This example creates a stream slice in the wind data set at z = 5.
                        load wind
                        daspect([1 1 1])
                        streamslice(x, y, z, u, v, w, [], [], [5])
                        axis tight
```


This example uses streamslice to calculate vertex data for the stream lines and the direction arrows. This data is then used by streamline to plot the lines

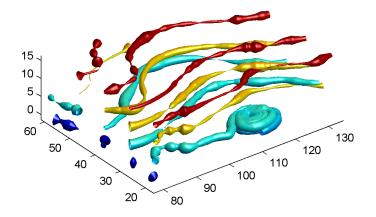

and arrows. Slice planes illustrating with color the wind speed ($\sqrt{u^2 + v^2 + w^2}$) are drawn by slice in the same planes.


```
load wind
daspect([1 1 1])
[verts averts] = streamslice(u, v, w, 10, 10, 10);
streamline([verts averts])
spd = sqrt(u. ^2 + v. ^2 + w. ^2);
hold on;
slice(spd, 10, 10, 10);
colormap(hot)
shading interp
view(30, 50); axis(volumebounds(spd));
camlight; material([.5 1 0])
```


This example superimposes contour lines on a surface and then uses streamsl i ce to draw lines that indicate the gradient of the surface. interp2 is used to find the points for the lines that lie on the surface.


```
z = peaks;
surf(z)
shading interp
hold on
[c ch] = contour3(z, 20); set(ch, 'edgecolor', 'b')
[u v] = gradient(z);
h = streamslice(-u, -v);
set(h, 'color', 'k')
for i=1:length(h);
zi = interp2(z, get(h(i), 'xdata'), get(h(i), 'ydata'));
set(h(i), 'zdata', zi);
end
view(30, 50); axis tight
```


Purpose	Creates a 3-D stream tube plot
Syntax	<pre>streamtube(X, Y, Z, U, V, W, startx, starty, startz) streamtube(U, V, W, startx, starty, startz) streamtube(vertices, X, Y, Z, divergence) streamtube(vertices, divergence) streamtube(vertices, width) streamtube(vertices) streamtube(, [scale n]) h = streamtube()</pre>
Description	<pre>streamtube(X, Y, Z, U, V, W, startx, starty, startz) draws stream tubes from vector volume data U, V, W. The arrays X, Y, Z define the coordinates for U, V, W and must be monotonic and 3-D plaid (as if produced by meshgri d). startx, starty, and startz define the starting positions of the stream lines at the center of the tubes. The section "Starting Points for Stream Plots" in Visualization Techniques provides more information on defining starting points. The width of the tubes is proportional to the normalized divergence of the vector field. Generally, you should set the DataAspectRatio (daspect) before calling streamtube.</pre>
	<pre>streamtube(U, V, W, startx, starty, startz) assumes X, Y, and Z are determined by the expression: [X, Y, Z] = meshgrid(1: n, 1: m, 1: p) where [m, n, p] = size(U). streamtube(vertices, X, Y, Z, divergence) assumes precomputed stream line vertices and divergence. vertices is a cell array of stream line vertices (as produced by stream3). X, Y, Z, and divergence are 3-D arrays. streamtube(vertices, divergence) assumes X, Y, and Z are determined by the expression: [X, Y, Z] = meshgrid(1: n, 1: m, 1: p)</pre>


	where [m, n, p] = size(divergence)
	where [m, n, p] = Size(urvergence)
	streamtube(vertices, width) specifies the width of the tubes in the cell array of vectors, width. The size of each corresponding element of vertices and width must be equal. width can also be a scalar, specifying a single value for the width of all stream tubes.
	streamtube(vertices) selects the width automatically.
	streamtube(, [scale n]) scales the width of the tubes by scale. The default is scale = 1. When the stream tubes are created using start points or divergence, specifying scale = 0 suppresses automatic scaling. n is the number of points along the circumference of the tube. The default is $n = 20$.
	h = streamtube(z) returns a vector of handles (one per start point) to surface objects used to draw the stream tubes.
Examples	This example uses stream tubes to indicate the flow in the wind data set. Inputs include the coordinates, vector field components, and starting location for the stream tubes.
	<pre>load wind [sx sy sz] = meshgrid(80, 20: 10: 50, 0: 5: 15); daspect([1 1 1]) streamtube(x, y, z, u, v, w, sx, sy, sz); %Define viewing and lighting view(3) axis tight shading interp; camlight; lighting gouraud</pre>

This example uses precalculated vertex data (stream3) and divergence (di vergence).

```
load wind
[sx sy sz] = meshgrid(80, 20: 10: 50, 0: 5: 15);
daspect([1 1 1])
verts = stream3(x, y, z, u, v, w, sx, sy, sz);
div = divergence(x, y, z, u, v, w);
streamtube(verts, x, y, z, -div);
%-----Define viewing and lighting
view(3)
axis tight
shading interp
camlight; lighting gouraud
```

streamtube

See alsodi vergence, streamri bbon, streaml i ne, stream3"Volume Visualization" for related functionsDisplaying Divergence with Stream Tubes for another exampleSpecifying Starting Points for Stream Plots for related information

strfind

Purpose	Find one string within another		
Syntax	k = strfind(str, pattern)		
Description	k = strfind(str, pattern) searches the string, str, for occurrences of a shorter string, pattern, returning the starting index of each such occurrence in the double array, k. If pattern is not found in str, or if pattern is longer than str, then strfind returns the empty array, [].		
	The search performed by strfind is case sensitive. Any leading and trailing blanks in either str or pattern are explicitly included in the comparison.		
	Use the function ${\tt findstr}, {\tt if}$ you are not certain which of the two input strings is the longer one.		
Examples	<pre>s = 'Find the starting indices of the pattern string'; strfind(s,'in') ans =</pre>		
	<pre>strfind(s, 'In') ans = []</pre>		
	<pre>strfind(s, ' ') ans =</pre>		
	5 9 18 26 29 33 41		
See Also	findstr, strmatch, strtok, strcmp, strncmp, strcmpi, strncmpi, regexp, regexpi, regexprep		

strings

Purpose	MATLAB string handling
Syntax	<pre>S = 'Any Characters' S = char(X) X = double(S)</pre>
Description	S = 'Any Characters' creates a character array, or string. The string is actually a vector whose components are the numeric codes for the characters (the first 127 codes are ASCII). The actual characters displayed depend on the character set encoding for a given font. The length of S is the number of characters. A quote within the string is indicated by two quotes.
	$S = [S1 S2 \dots]$ concatenates character arrays S1, S2, etc. into a new character array, S.
	S = strcat(S1, S2,) concatenates S1, S2, etc., which can be character arrays or cell arrays of strings. When the inputs are all character arrays, the output is also a character array. When any of the inputs is a cell array of strings, strcat returns a cell array of strings.
	Trailing spaces in streat character array inputs are ignored and do not appear in the output. This is not true for streat inputs that are cell arrays of strings. Use the $S = [S1 \ S2 \]$ concatenation syntax, shown above, to preserve trailing spaces.
	S = char(X) can be used to convert an array that contains positive integers representing numeric codes into a MATLAB character array.
	X = doubl e(S) converts the string to its equivalent double precision numeric codes.
	A collection of strings can be created in either of the following two ways:
	 As the rows of a character array via strvcat As a cell array of strings via the curly braces
	You can convert between character array and cell array of strings using char and $cellstr$. Most string functions support both types.
	i schar(S) tells if S is a string variable. i scellstr(S) tells if S is a cell array of strings.

Examples Create a simple string that includes a single quote. msg = 'You''re right!' msg = You're right! Create the string, name, using two methods of concatenation. name = ['Thomas' ' R. ' 'Lee'] name = strcat('Thomas', ' R.', ' Lee') Create a vertical array of strings. C = strvcat('Hello', 'Yes', 'No', 'Goodbye') C = Hello Yes No Goodbye Create a cell array of strings. S = { 'Hello' 'Yes' 'No' 'Goodbye' } S = 'Hello' 'Yes' 'No' 'Goodbye' See Also char, cellstr, ischar, iscellstr, strvcat, sprintf, sscanf, input

strjust

Purpose	Justify a character array
Syntax	<pre>T = strjust(S) T = strjust(S, 'right') T = strjust(S, 'left') T = strjust(S, 'center')</pre>
Description	T = strjust(S) or T = strjust(S, 'right') returns a right-justified version of the character array S. T = strjust(S, 'left') returns a left-justified version of S.
	T = strjust(S, 'center') returns a center-justified version of S.
See Also	debl ank

Purpose	Find possible matches for a string	
Syntax	<pre>x = strmatch('str', STRS) x = strmatch('str', STRS, 'exact')</pre>	
Description	<pre>x = strmatch('str', STRS) looks through the rows of the character array or cell array of strings STRS to find strings that begin with string str, returning the matching row indices. strmatch is fastest when STRS is a character array. x = strmatch('str', STRS, 'exact') returns only the indices of the strings in</pre>	
	STRS matching <i>str</i> exactly.	
Examples	The statement	
	<pre>x = strmatch('max', strvcat('max', 'minimax', 'maximum'))</pre>	
	returns $x = [1; 3]$ since rows 1 and 3 begin with 'max'. The statement	
	<pre>x = strmatch('max', strvcat('max', 'minimax', 'maximum'), 'exact')</pre>	
	returns $x = 1$, since only row 1 matches 'max' exactly.	
See Also	strcmp, strcmpi, strncmp, strncmpi, strfind, findstr, strvcat, regexp,	

strncmp

Purpose	Compare the first n characters of two strings	
Syntax	<pre>k = strncmp('str1','str2',n) TF = strncmp(S,T,n)</pre>	
Description	k = strncmp('str1', 'str2', n) returns logical true (1) if the first n characters of the strings $str1$ and $str2$ are the same, and returns logical false (0) otherwise. Arguments $str1$ and $str2$ may also be cell arrays of strings. TF = $strncmp(S, T, N)$ where either S or T is a cell array of strings, returns an array TF the same size as S and T containing 1 for those elements of S and T that match (up to n characters), and 0 otherwise. S and T must be the same size (or one can be a scalar cell). Either one can also be a character array with the right number of rows.	
Remarks	The command strncmp is case sensitive. Any leading and trailing blanks in either of the strings are explicitly included in the comparison. strncmp is intended for comparison of character data. When used to compare numeric data, strncmp returns 0.	
See Also	strncmpi, strcmp, strcmpi, strmatch, strfind, findstr, regexp, regexpi, regexprep	

strncmpi

Purpose	Compare first n characters of strings ignoring case	
Syntax	strncmpi ('str1','str2',n) TF = strncmpi (S,T,n)	
Description	strncmpi (' $str1'$, ' $str2'$, n) returns 1 if the first n characters of the strings $str1$ and $str2$ are the same except for case, and 0 otherwise.	
	TF = strncmpi (S, T, n) when either S or T is a cell array of strings, returns an array the same size as S and T containing 1 for those elements of S and T that match except for case (up to n characters), and 0 otherwise. S and T must be the same size (or one can be a scalar cell). Either one can also be a character array with the right number of rows.	
Remarks	strncmpi is intended for comparison of character data. When used to compare numeric data, strncmpi returns 0.	
	strncmpi supports international character sets.	
See Also	strncmp, strcmpi, strcmp, strmatch, strfind, findstr, regexp, regexpi, regexprep	

strread

Purpose	Read formatted data from a string
Syntax	<pre>A = strread('str') A = strread('str','', N) A = strread('str','', param, value,) A = strread('str','', N, param, value,) [A, B, C,] = strread('str', 'format') [A, B, C,] = strread('str', 'format', N) [A, B, C,] = strread('str', 'format', param, value,) [A, B, C,] = strread('str', 'format', N, param, value,)</pre>
Description	The first four syntaxes are used on strings containing only numeric data. If the input string, str, contains any text data, an error is generated.
	A = strread('str') reads numeric data from the string, str, into the single variable A.
	A = $strread('str', '', N)$ reads N lines of numeric data, where N is an integer greater than zero. If N is -1, strread reads the entire string.
	A = strread('str','', param, value,) customizes strread using param/value pairs, as listed in the table below.
	A = strread('str','', N, param, value,) reads N lines and customizes the strread using param/value pairs.
	The next four syntaxes can be used on numeric or nonnumeric data. In this case, strread reads data from the string, str, into the variables A, B, C, and so on, using the specified format.
	The type of each return argument is given by the format string. The number of return arguments must match the number of conversion specifiers in the format string. If there are fewer fields in the string than matching conversion specifiers in the format string, an error is generated.
	The format string determines the number and types of return arguments. The number of return arguments is the number of items in the format string. The format string supports a subset of the conversion specifiers and conventions of

the C language fscanf routine. Values for the format string are listed in the table below. Whitespace characters in the format string are ignored.

[A, B, C, ...] = strread('str', 'format') reads data from the string, str, into the variables A, B, C, and so on, using the specified format, until the entire string is read.

format	Action	Output	
Literals (ordinary characters)	Ignore the matching characters.NoneFor example, in a file that hasDept followed by a number (for department number), to skip the Dept and read only the number, use ' Dept' in the format string.		
%d	Read a signed integer value.	Double array	
%u	Read an integer value.	Double array	
%f	Read a floating point value.	Double array	
%s	Read a whitespace-separated string.	Cell array of strings	
%q	Read a string, which could be in double quotes. Cell array of strings. Does n include the dou quotes.		
%С	Read characters, including white space.	Character array	
%[]	Read the longest string containing Cell array of strict characters specified in the brackets.		
%[^]	Read the longest non-empty string containing characters that are not specified in the brackets.		

strread

format	Action	Output
%* instead of %	Ignore the matching characters specified by *.	No output
%w instead of %	Read field width specified by w. The %f format supports %w. pf, where w is the field width and p is the precision.	

[A, B, C, ...] = strread('str', 'format', N) reads the data, reusing the format string N times, where N is an integer greater than zero. If N is -1, strread reads the entire string.

[A, B, C, ...] = strread('str', 'format', param, value, ...) customizes strread using param/value pairs, as listed in the table below.

[A, B, C, ...] = strread('str', 'format', N, param, value, ...) reads the data, reusing the format string N times and customizes the strread using param/value pairs.

param	value	Action
whitespace	hi tespace * where Treats vector of cha * can be: whitespace. Default	
	b f n r t \\ \'' or ''' %%	Backspace Form feed New line Carriage return Horizontal tab Backslash Single quotation mark Percent sign
delimiter	Delimiter character	Specifies delimiter character. Default is none.
expchars	Exponent characters	Default is eEdD.

param	value	Action
bufsi ze	positive integer	Specifies the maximum string length, in bytes. Default is 4095.
headerlines	positive integer	Ignores the specified number of lines at the beginning of the file.
commentstyle	matlab	Ignores characters after %
commentstyle	shel l	Ignores characters after #.
commentstyle	с	Ignores characters between /* and */.
commentstyle	C++	Ignores characters after //.

Remarks	If your data uses a character other than a space as a delimiter, you must use the strread parameter 'del i miter' to specify the delimiter. For example, if the string, str, used a semicolon as a delimiter, you would use this command.		
	<pre>[names, types, x, y, answer] = strread(str, '%s %s %f %d %s', 'delimiter', ';')</pre>		
Examples	<pre>s = sprintf('a, 1, 2\nb, 3, 4\n'); [a, b, c] = strread(s, '%s%d%d', 'delimiter', ', ')</pre>		
	a = 'a' 'b'		
	b = 1 3		
	$c = \frac{2}{4}$		

See Also textread, sscanf

strrep

Purpose	String search and replace		
Syntax	<pre>str = strrep(str1, str2, str3)</pre>		
Description	<pre>str = strrep(str1, str2, str3) replaces all occurrences of the string str2 within string str1 with the string str3. strrep(str1, str2, str3), when any of str1, str2, or str3 is a cell array of strings, returns a cell array the same size as str1, str2 and str3 obtained by performing a strrep using corresponding elements of the inputs. The inputs must all be the same size (or any can be a scalar cell). Any one of the strings can also be a character array with the right number of rows.</pre>		
Examples	<pre>s1 = 'This is a good example.'; str = strrep(s1, 'good', 'great') str = This is a great example.</pre>		
	A = 'MATLAB' 'SIMULINK' 'Toolboxes' 'The MathWorks'		
	B = 'Handle Graphics' 'Real Time Workshop' 'Toolboxes' 'The MathWorks'		
	C = 'Signal Processing' 'Image Processing' 'MATLAB' 'SIMULINK'		
	strrep(A, B, C) ans = 'MATLAB' 'SI MULI NK' 'MATLAB' 'SI MULI NK'		
See Also	findstr		

Purpose	First token in string	
Syntax	<pre>token = strtok('str', delimiter) token = strtok('str') [token, rem] = strtok()</pre>	
Description	token = $strtok('str', delimiter)$ returns the first token in the text string str , that is, the first set of characters before a delimiter is encountered. The vector delimiter contains valid delimiter characters. Any leading delimiters are ignored.	
	token = strtok('str') uses the default delimiters, the white space characters. These include tabs (ASCII 9), carriage returns (ASCII 13), and spaces (ASCII 32). Any leading white space characters are ignored.	
	[token, rem] = strtok() returns the remainder rem of the original string. The remainder consists of all characters from the first delimiter on.	
Examples	<pre>s = ' This is a good example.'; [token, rem] = strtok(s) token = This rem = is a good example.</pre>	
See Also	findstr, strmatch	

struct

Purpose	Create structure array		
Syntax	<pre>s = struct('field1', {}, 'field2', {},) s = struct('field1', values1, 'field2', values2,)</pre>		
Description	$s = struct('field1', {}, 'field2', {},)$ creates an empty structure with fields field1, field2,		
	s = struct('field1', values1, 'field2', values2,) creates a structure array with the specified fields and values. The value arrays values1, values2, etc. must be cell arrays of the same size or scalar cells. Corresponding elements of the value arrays are placed into corresponding structure array elements. The size of the resulting structure is the same size as the value cell arrays or 1-by-1 if none of the values is a cell.		
Examples	The command		
	<pre>s = struct('type', {'big', 'little'}, 'color', {'red'}, 'x', {3 4})</pre>		
	produces a structure array s:		
	S =		
	1x2 struct array with fields:		
	type		
	col or		
	Х		
	The value arrays have been distributed among the fields of s:		
	s(1)		
	ans =		
	type: 'big'		
	col or: 'red'		
	x: 3		
	s(2)		
	ans =		
	type: 'little'		
	color: 'red'		
	x: 4		

Similarly, the command

```
a. b = struct('z', {});
produces an empty structure a. b with field z.
a. b
ans =
0x0 struct array with fields:
z
See Also
isstruct, fieldnames, isfield, orderfields, rmfield, deal, cell2struct, struct2cell
```

struct2cell

Purpose	Structure to cell array conversion		
Syntax	c = struct2cell(s)		
Description	$c\ =\ struct2cell(s)\ converts$ the m-by-n structure s (with p fields) into a p-by-m-by-n cell array c.		
	If structure s is multidimensional, cell array c has size [p si $ze(s)$].		
Examples	The commands		
	<pre>clear s, s.category = 'tree'; s.height = 37.4; s.name = 'birch';</pre>		
	create the structure		
	s = category: 'tree' height: 37.4000 name: 'birch'		
	Converting the structure to a cell array,		
	c = struct2cell(s)		
	c =		

See Also cell2struct, fieldnames

Purpose	Vertical concatenation of strings		
Syntax	S = strvcat(t1, t2, t3,)		
Description	S = strvcat(t1, t2, t3,) forms the character array S containing the text strings (or string matrices) t1, t2, t3, as rows. Spaces are appended to each string as necessary to form a valid matrix. Empty arguments are ignored.		
Remarks	If each text parameter, ti, is itself a character array, strvcat appends them vertically to create arbitrarily large string matrices.		
Examples	The command strvcat('Hello', 'Yes') is the same as ['Hello';'Yes '], except that strvcat performs the padding automatically.		
	t1 = 'first';t2 = 'string';t3	= 'matrix';t4 = 'second';	
	S1 = strvcat(t1, t2, t3)	S2 = strvcat(t4, t2, t3)	
	S1 =	S2 =	
	first	second	
	string	string	
	matrix	matrix	
	S3 = strvcat(S1, S2)		
	S3 =		
	first		
	string		
	matrix		
	second		
	string		
	matrix		
See Also	cat,int2str,mat2str,num2str,stri	ngs	

sub2ind

Purpose	Single index from subscripts		
Syntax	IND = sub2ind(siz, I, J) IND = sub2ind(siz, I1, I2,, In)		
Description	The sub2i nd command determines the equivalent single index corresponding to a set of subscript values.		
	IND = $sub2i nd(si z, I, J)$ returns the linear index equivalent to the row and column subscripts I and J for a matrix of size si z. si z is a 2-element vector, where $si z(1)$ is the number of rows and $si z(2)$ is the number of columns.		
	IND = $sub2i nd(si z, I1, I2,, In)$ returns the linear index equivalent to the n subscripts I 1,I2,,In for an array of size si z. si z is an n-element vector that specifies the size of each array dimension.		
Examples	Create a 3-by-4-by-2 array, A.		
	$A = [17 \ 24 \ 1 \ 8; \ 2 \ 22 \ 7 \ 14; \ 4 \ 6 \ 13 \ 20];$ A(:,:,2) = A - 10		
	A(:,:,1) =		
	17 24 1 8		
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	4 0 13 20		
	A(:,:,2) =		
	7 14 -9 -2		
	-8 12 -3 4		
	-6 -4 3 10		
	The value at row 2, column 1, page 2 of the array is -8.		
	A(2, 1, 2)		

ans =

- 8

```
To convert A(2, 1, 2) into its equivalent single subscript, use sub2i nd.

sub2i nd(si ze(A), 2, 1, 2)

ans =

14

You can now access the same location in A using the single subscripting

method.

A(14)

ans =

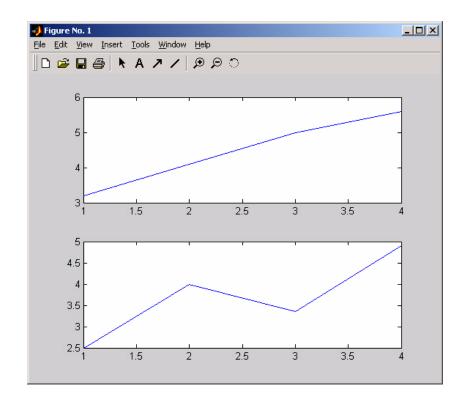
-8
```

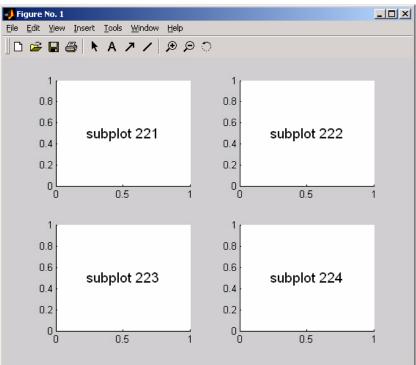
See Also ind2sub, find, size

subplot

Purpose	Create and control multiple axes	
Syntax	<pre>subplot(m, n, p) subplot(m, n, p, 'replace') subplot(h) subplot('Position', [left bottom width height]) h = subplot()</pre>	
Description	subpl ot divides the current figure into rectangular panes that are numbered row-wise. Each pane contains an axes. Subsequent plots are output to the current pane.	
	subpl ot (m, n, p) creates an axes in the p-th pane of a figure divided into an m-by-n matrix of rectangular panes. The new axes becomes the current axes.	
	If p is a vector, it specifies an axes having a position that covers all the subplot positions listed in p .	
	${\rm subpl} ot(m,n,p,'replace')$ If the specified axes already exists, delete it and creat a new axes.	
	$\operatorname{subpl}\operatorname{ot}(h)$ makes the axes with handle h current for subsequent plotting commands.	
	subplot('Position', [left bottom width height]) creates an axes at the position specified by a four-element vector. left, bottom, width, and height are in normalized coordinates in the range from 0.0 to 1.0.	
	h = subplot() returns the handle to the new axes.	
Remarks	If a subpl ot specification causes a new axes to overlap any existing axes, then subpl ot deletes the existing axes and uicontrol objects. However, if the subpl ot specification exactly matches the position of an existing axes, then the matching axes is not deleted and it becomes the current axes.	
	subpl ot $(1, 1, 1)$ or cl f deletes all axes objects and returns to the default subpl ot $(1, 1, 1)$ configuration.	
	You can omit the parentheses and specify subplot as.	
	subplot mnp	

	where m refers to the row, n refers to the column, and p specifies the pane.	
	Special Case – subplot(111)	
	The command subpl ot (111) is not identical in behavior to subpl ot $(1, 1, 1)$ and exists only for compatibility with previous releases. This syntax does not immediately create an axes, but instead sets up the figure so that the next graphics command executes a clf reset (deleting all figure children) and creates a new axes in the default position. This syntax does not return a handle, so it is an error to specify a return argument. (This behavior is implemented by setting the figure's NextPl ot property to repl ace.)	
Examples	To plot i ncome in the top half of a figure and outgo in the bottom half, i ncome = $[3.2 \ 4.1 \ 5.0 \ 5.6];$ outgo = $[2.5 \ 4.0 \ 3.35 \ 4.9];$	
	<pre>subplot(2, 1, 1); plot(income) subplot(2, 1, 2); plot(outgo)</pre>	


subsasgn


Purpose	Overloaded method for $A(I) = B$, $A\{I\} = B$, and A. fi el d=B		
Syntax	A = subsasgn(A, S, B)		
Description	 A = subsasgn(A, S, B) is called for the syntax A(i)=B, A{i}=B, or A. i=B when A is an object. S is a structure array with the fields: type: A string containing ' ()', ' {}', or '.', where ' ()' specifies integer subscripts; ' {}' specifies cell array subscripts, and '.' specifies subscripted structure fields. 		
	• subs: A cell array or s	tring containing the actua	l subscripts.
Remarks	subsasgn is designed to be used by the MATLAB interpreter to handle indexed assignments to objects. Calling subsasgn directly as a function is not recommended. If you do use subsasgn in this way, it conforms to the formal MATLAB dispatching rules and may yield unexpected results.		
Examples	The syntax $A(1:2, :) = B$ calls $A = subsasgn(A, S, B)$ where S is a 1-by-1 structure with S. type=' ()' and S. subs = $\{1:2, ':'\}$. A colon used as a subscript is passed as the string ':'.		
	The syntax $A{1:2}=B$ calls $A=subsasgn(A, S, B)$ where S. type=' {}'.		
	The syntax A. fiel d=B calls $subsasgn(A, S, B)$ where S. type='.' and S. $subs='field'$.		
	These simple calls are combined in a straightforward way for more complicated subscripting expressions. In such cases l ength(S) is the number of subscripting levels. For instance, A(1, 2). name(3: 5) =B calls A=subsasgn(A, S, B) where S is 3-by-1 structure array with the following values:		
	S(1).type='()'	S(2).type='.'	S(3).type='()'
	$S(1). subs=\{1, 2\}$	S(2).subs='name'	$S(3). subs={3:5}$
See Also	subsref See "Handling Subscript overloaded methods and	ed Assignment" for more subsasgn.	information about

Purpose	Overloaded method for X(A)
Syntax	ind = subsindex(A)
Description	ind = subsindex(A) is called for the syntax ' $X(A)$ ' when A is an object. subsindex must return the value of the object as a zero-based integer index. (ind must contain integer values in the range 0 to prod(size(X)) - 1). subsindex is called by the default subsref and subsasgn functions, and you can call it if you overload these functions.
See Alco	

See Also

subsasgn, subsref

The following illustration shows four subplot regions and indicates the command used to create each.

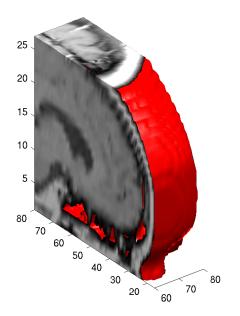
See Also axes, cl a, cl f, fi gure, gca

"Basic Plots and Graphs" for more information

subspace

Purpose	Angle between two subspaces
Syntax	theta = $subspace(A, B)$
Description	theta = $subspace(A, B)$ finds the angle between two subspaces specified by the columns of A and B. If A and B are column vectors of unit length, this is the same as $acos(A' * B)$.
Remarks	If the angle between the two subspaces is small, the two spaces are nearly linearly dependent. In a physical experiment described by some observations A, and a second realization of the experiment described by B, subspace(A, B) gives a measure of the amount of new information afforded by the second experiment not associated with statistical errors of fluctuations.
Examples	Consider two subspaces of a Hadamard matrix, whose columns are orthogonal. H = hadamard(8); A = H(:, 2: 4); B = H(:, 5: 8);
	Note that matrices A and B are different sizes— A has three columns and B four. It is not necessary that two subspaces be the same size in order to find the angle between them. Geometrically, this is the angle between two hyperplanes embedded in a higher dimensional space.
	<pre>theta = subspace(A, B) theta = 1.5708</pre>
	That A and B are orthogonal is shown by the fact that theta is equal to $\pi/2$.
	theta - pi/2

ans = 0


subsref

Purpose	Overloaded method for A	$A(I), A\{I\}$ and $A. field$	
Syntax	B = subsref(A, S)		
Description	B = subsref(A, S) is cal object. S is a structure a	lled for the syntax A(i), A rray with the fields:	{i}, or A. i when A is an
			nere ' () ' specifies integer nd ' . ' specifies subscripted
	• subs: A cell array or s	tring containing the actua	ll subscripts.
Remarks	references to objects. Ca recommended. If you do	used by the MATLAB interpr lling subsref directly as a use subsref in this way, i iles and may yield unexpe	a function is not it conforms to the formal
Examples	The syntax $A(1:2,:)$ calls subsref (A, S) where S is a 1-by-1 structure with S. type=' ()' and S. subs={1:2, ':'}. A colon used as a subscript is passed a the string ':'.		
	The syntax A{1:2} calls	subsref(A, S) where S. ty	$pe=' \{\}' \text{ and } S. subs=\{1: 2\}.$
	The syntax A. fi el d call S. subs=' fi el d' .	s subsref(A, S) where S.	type='.' and
	subscripting expressions subscripting levels. For i	s. In such cases l ength(S)	5) calls subsref(A, S) where
	S(1).type='()'	S(2).type='.'	S(3).type='()'
	S(1).subs={1,2}	S(2).subs='name'	$S(3)$. subs={3:5}
See Also	subsasgn		
	See "Handling Subscript methods and subsref.	ted Reference" for more in	formation about overloaded

Purpose	Create structure argument for subsasgn or subsref
Syntax	S = substruct(type1, subs1, type2, subs2,)
Description	$S = substruct(type1, subs1, type2, subs2,)$ creates a structure with the fields required by an overloaded subsref or subsasgn method. Each type string must be one of '. ', '() ', or '{}'. The corresponding subs argument must be either a field name (for the '. ' type) or a cell array containing the index vectors (for the '()' or '{}' types).
	The output S is a structure array containing the fields:
	 type - one of '. ', '() ', or '{}' subs - subscript values (field name or cell array of index vectors)
Examples	To call subsref with parameters equivalent to the syntax
	B = A(3, 5). fi el d
	you can use
	<pre>S = substruct('()', {3, 5}, '.', 'field'); B = subsref(A, S);</pre>
	The structure created by substruct in this example contains the following.
	S(1)
	ans =
	type: '()' subs: {[3] [5]}
	S(2)
	ans =
	type: '.' subs: 'field'
See Also	subsasgn, subsref

subvolume

Purpose	Extract subset of volume data set
Syntax	<pre>[Nx, Ny, Nz, Nv] = subvolume(X, Y, Z, V, limits) [Nx, Ny, Nz, Nv] = subvolume(V, limits) Nv = subvolume()</pre>
Description	[Nx, Ny, Nz, Nv] = subvolume(X, Y, Z, V, limits) extracts a subset of the volume data set V using the specified axis-aligned limits. limits = $[xmin, xmax, ymin, ymax, zmin, zmax]$ (Any NaNs in the limits indicate that the volume should not be cropped along that axis).
	The arrays X, Y, and Z define the coordinates for the volume V. The subvolume is returned in NV and the coordinates of the subvolume are given in NX, NY, and NZ.
	[Nx, Ny, Nz, Nv] = subvolume(V, limits) assumes the arrays X, Y, and Z are defined as $[X, Y, Z] = meshgrid(1: N, 1: M, 1: P)$ where $[M, N, P] = size(V)$.
	Nv = subvolume() returns only the subvolume.
Examples	This example uses a data set that is a collection of MRI slices of a human skull. The data is processed in a variety of ways:
	• The 4-D array is squeezed (squeeze) into three dimensions and then a subset of the data is extracted (subvol ume).
	• The outline of the skull is an isosurface generated as a patch (p1) whose vertex normals are recalculated to improve the appearance when lighting is applied (patch, i sosurface, i sonormals).
	• A second patch (p2) with interpolated face color draws the end caps (FaceCol or, i socaps).
	• The view of the object is set (view, axis, daspect).
	• A 100-element grayscale colormap provides coloring for the end caps (col ormap).
	• Adding lights to the right and left of the camera illuminates the object (caml i ght, l i ght i ng).
	load mri D = squeeze(D); [x,y,z,D] = subvolume(D,[60,80,nan,80,nan,nan]);

See Also i socaps, i sonormal s, i sosurface, reducepatch, reducevol ume, smooth3 "Volume Visualization" for related functions

sum

Purpose	Sum of array elements
Syntax	B = sum(A) B = sum(A, dim)
Description	B = sum(A) returns sums along different dimensions of an array.
	If A is a vector, sum(A) returns the sum of the elements.
	If A is a matrix, sum(A) treats the columns of A as vectors, returning a row vector of the sums of each column.
	If A is a multidimensional array, sum(A) treats the values along the first non-singleton dimension as vectors, returning an array of row vectors.
	B = sum(A, dim) sums along the dimension of A specified by scalar dim.
Remarks	sum(diag(X)) is the trace of X.
Examples	The magic square of order 3 is
	M = magi c(3) $M =$
	8 1 6
	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$
	This is called a magic square because the sums of the elements in each column are the same.
	sum(M) = 15 15 15
	as are the sums of the elements in each row, obtained by transposing:
	sum(M) =
	15 15 15
See Also	cumsum, diff, prod, trace

superiorto

Purpose	Superior class relationship
Syntax	<pre>superiorto(' cl ass1', ' cl ass2',)</pre>
Description	The superi orto function establishes a hierarchy that determines the order in which MATLAB calls object methods.
	superi orto(' cl ass1', ' cl ass2',) invoked within a class constructor method (say mycl ass. m) indicates that mycl ass's method should be invoked if a function is called with an object of class mycl ass and one or more objects of class cl ass1, cl ass2, and so on.
Remarks	Suppose A is of class ' cl ass_a', B is of class ' cl ass_b' and C is of class ' cl ass_c'. Also suppose the constructor cl ass_c. m contains the statement: superi orto(' cl ass_a'). Then $e = fun(a, c)$ or $e = fun(c, a)$ invokes cl ass_c/fun.
	If a function is called with two objects having an unspecified relationship, the two objects are considered to have equal precedence, and the leftmost object's method is called. So, $fun(b, c)$ calls $class_b/fun$, while $fun(c, b)$ calls $class_c/fun$.
See Also	inferiorto

support

Purpose	Open MathWorks Technical Support Web page
Syntax	support
Description	<pre>support opens your web browser to The MathWorks Technical Support Web page at http: //www. mathworks. com/support. This page contains the following items:</pre>
	 A Solution Search Engine The "Virtual Technical Support Engineer" that, through a series of questions, determines possible solutions to the problems you are experiencing Technical Notes Tutorials Bug fixes and patches
See Also	web

Purpose	3-D shaded surface plot
Syntax	<pre>surf(Z) surf(X, Y, Z) surf(X, Y, Z, C) surf(, 'PropertyName', PropertyValue) surfc() h = surf() h = surf()</pre>
Description	Use surf and surfc to view mathematical functions over a rectangular region. surf and surfc create colored parametric surfaces specified by X, Y, and Z, with color specified by Z or C.
	surf(Z) creates a a three-dimensional shaded surface from the <i>z</i> components in matrix Z, using $x = 1$: n and $y = 1$: m, where $[m, n] = si ze(Z)$. The height, Z, is a single-valued function defined over a geometrically rectangular grid. Z specifies the color data as well as surface height, so color is proportional to surface height.
	surf (X, Y, Z) creates a shaded surface using Z for the color data as well as surface height. X and Y are vectors or matrices defining the x and y components of a surface. If X and Y are vectors, $l ength(X) = n$ and $l ength(Y) = m$, where [m, n] = si ze(Z). In this case, the vertices of the surface faces are (X(j), Y(i), Z(i, j)) triples.
	surf (X, Y, Z, C) creates a shaded surface, with color defined by C. MATLAB performs a linear transformation on this data to obtain colors from the current colormap.
	$surf(\ldots, '\textit{PropertyName'}, PropertyValue) specifies surface properties along with the data.$
	surfc() draws a contour plot beneath the surface.
	h = surf() and $h = surfc()$ return a handle to a surface graphics object.

Algorithm

Abstractly, a parametric surface is parametrized by two independent variables, i and j, which vary continuously over a rectangle; for example, $1 \le i \le m$ and $1 \le j \le n$. The three functions, x(i, j), y(i, j), and z(i, j), specify the surface. When i and j are integer values, they define a rectangular grid with integer grid points. The functions x(i, j), y(i, j), and z(i, j) become three m-by-n matrices, X, Y and Z. surface color is a fourth function, c(i, j), denoted by matrix C.

Each point in the rectangular grid can be thought of as connected to its four nearest neighbors.

$$i-1, j$$

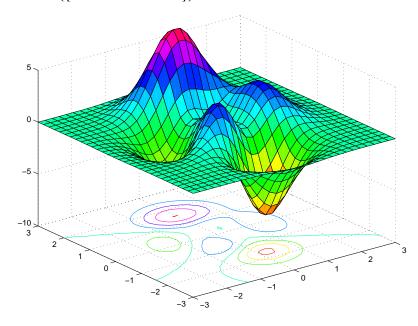
|
 $i, j-1 - i, j - i, j+1$
|
 $i+1, j$

This underlying rectangular grid induces four-sided patches on the surface. To express this another way, $[X(:) \ Y(:) \ Z(:)]$ returns a list of triples specifying points in 3-space. Each interior point is connected to the four neighbors inherited from the matrix indexing. Points on the edge of the surface have three neighbors; the four points at the corners of the grid have only two neighbors. This defines a mesh of quadrilaterals or a *quad-mesh*.

Surface color can be specified in two different ways – at the vertices or at the centers of each patch. In this general setting, the surface need not be a single-valued function of x and y. Moreover, the four-sided surface patches need not be planar. For example, you can have surfaces defined in polar, cylindrical, and spherical coordinate systems.

The shading function sets the shading. If the shading is interp, C must be the same size as X, Y, and Z; it specifies the colors at the vertices. The color within a surface patch is a bilinear function of the local coordinates. If the shading is faceted (the default) or flat, C(i, j) specifies the constant color in the surface patch:

In this case, C can be the same size as X, Y, and Z and its last row and column are ignored, Alternatively, its row and column dimensions can be one less than those of X, Y, and Z.


The surf and surfc functions specify the view point using view(3).

The range of X, Y, and Z, or the current setting of the axes XLi mMode, YLi mMode, and ZLi mMode properties (also set by the axi s function) determine the axis labels.


The range of C, or the current setting of the axes CLi m and Cl i mMode properties (also set by the caxi s function) determine the color scaling. The scaled color values are used as indices into the current colormap.

Examples Display a surface and contour plot of the peaks surface.

[X, Y, Z] = peaks(30); surfc(X, Y, Z) colormap hsv axis([-3 3 -3 3 -10 5])

Color a sphere with the pattern of +1s and -1s in a Hadamard matrix.

See Also	axi s, caxi s, col ormap, contour, del aunay, mesh, pcol or, shadi ng, tri surf, vi ew
	Properties for surface graphics objects
	"Creating Surfaces and Meshes" for related functions
	Representing a Matrix as a Surface for more examples
	Coloring Mesh and Surface Plots for information about how to control the coloring of surfaces

Purpose	Convert surface data to patch data	
Syntax	<pre>fvc = surf2patch(h) fvc = surf2patch(Z) fvc = surf2patch(Z, C) fvc = surf2patch(X, Y, Z) fvc = surf2patch(X, Y, Z, C) fvc = surf2patch(, 'tri angles') [f, v, c] = surf2patch()</pre>	
Description	fvc = surf2patch(h) converts the geometry and color data from the surface object identified by the handle h into patch format and returns the face, vertex, and color data in the struct fvc . You can pass this struct directly to the patch command.	
	fvc = $surf2patch(Z)$ calculates the patch data from the surface's ZData matrix Z.	
	fvc = surf2patch(Z, C) calculates the patch data from the surface's ZData and CData matrices Z and C.	
	fvc = surf2patch(X, Y, Z) calculates the patch data from the surface's XData, YData, and ZData matrices X, Y, and Z.	
	fvc = surf2patch(X, Y, Z, C) calculates the patch data from the surface's XData, YData, ZData, and CData matrices X, Y, Z, and C.	
	$fvc = surf2patch(\ldots, 'tri angles')$ creates triangular faces instead of the quadrilaterals that compose surfaces.	
	[f, v, c] = surf2patch() returns the face, vertex, and color data in the three arrays f, v, and c instead of a struct.	
Examples	The first example uses the sphere command to generate the XData, YData, and ZData of a surface, which is then converted to a patch. Note that the ZData (z) is passed to surf2patch as both the third and fourth arguments – the third argument is the ZData and the fourth argument is taken as the CData. This is because the patch command does not automatically use the z-coordinate data for the color data, as does the surface command.	

Also, because patch is a low-level command, you must set the view to 3-D and shading to faceted to produce the same results produced by the surf command.

[x y z] = sphere; patch(surf2patch(x, y, z, z)); shading faceted; view(3)

In the second example surf2patch calculates face, vertex, and color data from a surface whose handle has been passed as an argument.

```
s = surf(peaks);
pause
patch(surf2patch(s));
delete(s)
shading faceted; view(3)
```

See Also patch, reducepatch, shrinkfaces, surface, surf

"Volume Visualization" for related functions

Purpose	Create surface object
Syntax	<pre>surface(Z) surface(Z, C) surface(X, Y, Z) surface(X, Y, Z, C) surface(' PropertyName', PropertyValue,) h = surface()</pre>
Description	surface is the low-level function for creating surface graphics objects. surfaces are plots of matrix data created using the row and column indices of each element as the <i>x</i> - and <i>y</i> -coordinates and the value of each element as the z-coordinate.
	surface(Z) plots the surface specified by the matrix Z. Here, Z is a single-valued function, defined over a geometrically rectangular grid.
	surface(Z, C) plots the surface specified by Z and colors it according to the data in C (see "Examples").
	surface(X, Y, Z) uses $C = Z$, so color is proportional to surface height above the <i>x</i> - <i>y</i> plane.
	$surface(X, Y, Z, C)\;$ plots the parametric surface specified by X, Y and Z, with color specified by C.
	surface(x, y, Z), surface(x, y, Z, C) replaces the first two matrix arguments with vectors and must have length(x) = n and length(y) = m where $[m, n] = si ze(Z)$. In this case, the vertices of the surface facets are the triples $(x(j), y(i), Z(i, j))$. Note that x corresponds to the columns of Z and y corresponds to the rows of Z. For a complete discussion of parametric surfaces, see the surf function.
	surface(' <i>PropertyName</i> ', PropertyValue,) follows the X, Y, Z, and C arguments with property name/property value pairs to specify additional surface properties. These properties are described in the "Surface Properties" section.
	h = surface() returns a handle to the created surface object.

Remarks Unlike high-level area creation functions, such as surf or mesh, surface does not respect the settings of the figure and axes NextPl ot properties. It simply adds the surface object to the current axes.

If you do not specify separate color data (C), MATLAB uses the matrix (Z) to determine the coloring of the surface. In this case, color is proportional to values of Z. You can specify a separate matrix to color the surface independently of the data defining the area of the surface.

You can specify properties as property name/property value pairs, structure arrays, and cell arrays (see set and get for examples of how to specify these data types).

surface provides convenience forms that allow you to omit the property name for the XData, YData, ZData, and CData properties. For example,

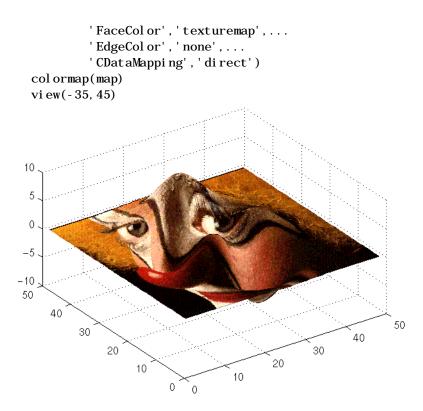
surface('XData', X, 'YData', Y, 'ZData', Z, 'CData', C)

is equivalent to:

surface(X, Y, Z, C)

When you specify only a single matrix input argument,

surface(Z)


MATLAB assigns the data properties as if you specified,

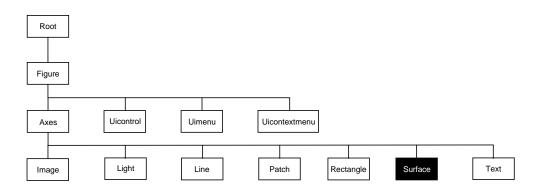
```
surface('XData', [1: si ze(Z, 2)], ...
'YData', [1: si ze(Z, 1)], ...
'ZData', Z, ...
'CData', Z)
```

The axi s, caxi s, col ormap, hol d, shadi ng, and vi ew commands set graphics properties that affect surfaces. You can also set and query surface property values after creating them using the set and get commands.

ExampleThis example creates a surface using the peaks M-file to generate the data, and
colors it using the clown image. The ZData is a 49-by-49 element matrix, while
the CData is a 200-by-320 matrix. You must set the surface's FaceCol or to
texturemap to use ZData and CData of different dimensions.

load clown
surface(peaks, flipud(X),...

Note the use of the ${\tt surface}(Z,C)$ convenience form combined with property name/property value pairs.


Since the clown data (X) is typically viewed with the i mage command, which MATLAB normally displays with 'ij' axis numbering and di rect CDataMapping, this example reverses the data in the vertical direction using fl i pud and sets the CDataMapping property to di rect.

See Also ColorSpec, mesh, patch, pcolor, surf

Properties for surface graphics objects

"Creating Surfaces and Meshes" and "Object Creation Functions" for related functions

Object Hierarchy

Setting Default Properties

You can set default surface properties on the axes, figure, and root levels.

set(0, 'DefaultSurfaceProperty', PropertyValue...)
set(gcf, 'DefaultSurfaceProperty', PropertyValue...)
set(gca, 'DefaultSurfaceProperty', PropertyValue...)

Where *Property* is the name of the surface property whose default value you want to set and PropertyVal ue is the value you are specifying. Use set and get to access the surface properties.

Property List The following table lists all surface properties and provides a brief description of each. The property name links take you to an expanded description of the properties.

Property Name	Property Description	Property Value	
Data Defining the Object			
XData	The <i>x</i> -coordinates of the vertices of the surface	Values: vector or matrix	
YData	The <i>y</i> -coordinates of the vertices of the surface	Values: vector or matrix	

Property Name	Property Description	Property Value	
ZData	The <i>z</i> -coordinates of the vertices of the surface	Values: matrix	
Specifying Color			
CData	Color data	Values: scalar, vector, or matrix Default: [] empty matrix	
CDataMappi ng	Controls mapping of CData to colormapValues: scal ed, di rect Default: scal ed		
EdgeCol or	Color of face edges Values: Col or Spec, fl at, interp Default: Col or Spec		
FaceCol or	Color of face	Values: Col orSpec, none, fl at, i nterp Default: Col orSpec	
MarkerEdgeColor	Color of marker or the edge color for filled markers Values: Col or Spe auto Default: auto		
MarkerFaceCol or	Fill color for markers that are closed shapes	Values: Col orSpec, none, auto Default: none	
Specifying Transparency			
Al phaData	The transparency data m-by-n matrix of d ui nt 8		
Al phaDataMappi ng	Transparency mapping methodnone, di rect, scal edDefault: scal ed		
EdgeAl pha	Transparency of the edges of patch facesscal ar, fl at, interp Default: 1 (opaque)		

Property Name Property Description		Property Value	
FaceAl pha	Transparency of the patch face	scal ar, fl at, i nterp, texture Default: 1 (opaque)	
Controlling the Effects of Lig	yhts		
Ambi entStrength	Intensity of the ambient light Values: scalar >=0 and <= Default: 0. 3		
BackFaceLi ghti ng	Controls lighting of faces pointing away from cameraValues: unlit,lit, reverselit Default: reverselit		
DiffuseStrength	Intensity of diffuse light	Values: scalar >=0 and <=1 Default: 0. 6	
EdgeLi ght i ng	Method used to light edges	Values: none, flat, gouraud, phong Default: none	
FaceLi ght i ng	Method used to light edges	Values: none, flat, gouraud, phong Default: none	
Normal Mode	MATLAB-generated or user-specified normal vectors	Values: auto, manual Default: auto	
Specul arCol orReflectanc e	Composite color of specularly reflected light	Values: scalar 0 to 1 Default: 1	
Specul arExponent	Harshness of specular reflection	Values: scalar >= 1 Default: 10	
Specul arStrength	Intensity of specular light	Values: scalar >=0 and <=1 Default: 0. 9	
VertexNormal s	Vertex normal vectors Values: matrix		
Defining Edges and Marker	s		

Property Name	Property Description	Property Value	
Li neStyl e	Linestyle of the edge. Select from five line styles.	five Values: –, ––, :, –., none Default: –	
Li neWi dth	The width of the edge in points Values: scalar Default: 0. 5 points		
Marker	Marker symbol to plot at data points Values: see Marker proper Default: none		
MarkerSize	Size of marker in points Values: size in points Default: 6		
Controlling the Appeara	nce		
Cl i ppi ng	Clipping to axes rectangle	Values: on, off Default: on	
EraseMode	Method of drawing and erasing the surface (useful for animation)	Values: normal, none, xor, background Default: normal	
MeshStyle	Specifies whether to draw all edge lines or just row or column edge lines	Values: both, row, col umn Defaults: both	
Sel ect i onHi ghl i ght	Highlight surface when selected (Sel ected property set to on)	Values: on, of f Default: on	
Vi si bl e	Make the surface visible or invisible Values: on, off Default: on		
Controlling Access to Ob	jects		
Handl eVi si bi l i t y	Determines if and when the surface's handle is visible to other functionsValues: on, call back, onDefault: onDefault: on		
HitTest	Determines if the surface can become the current object (see the figure CurrentObj ect property)	Values: on, off Default: on	
Properties Related to Ca	Ilback Douting Execution		

Property Name Property Description		Property Value	
BusyAction	Specifies how to handle callback routine interruptionValues: cancel , queue Default: queue		
ButtonDownFcn	Defines a callback routine that executes when a mouse button is pressed on over the surface	executes when a mouse button is handle	
CreateFcn	Defines a callback routine that executes when an surface is created	Values: string or function handle Default: ' ' (empty string)	
Del eteFcn	Defines a callback routine that executes when the surface is deleted (via close or del ete)	Values: string or function handle Default: ' ' (empty string)	
Interrupti bl e	Determines if callback routine can be interrupted	Values: on, off Default: on (can be interrupted)	
UI Context Menu	Associates a context menu with the surface	Values: handle of a uicontextmenu	
General Information A	About the Surface		
Children	Surface objects have no children	Values: [] (empty matrix)	
Parent	The parent of a surface object is always an axes object	Value: axes handle	
Selected	Indicates whether the surface is in a "selected" state.	Values: on, off Default: on	
Tag	User-specified label	Value: any string Default: '' (empty string)	
Туре	The type of graphics object (read only)	Value: the string ' surface'	
UserData	User-specified data Values: any matrix Default: [] (empty matri		

Modifying	You can set and query graphics object properties in two ways:		
Properties	• The Property Editor is an interactive tool that enables you to see and change object property values.		
	 The set and get commands enable you to set and query the values of properties 		
	To change the default value of properties see Setting Default Property Values.		
Surface Property	This section lists property names along with the types of values each accepts. Curly braces { } enclose default values.		
Descriptions	AlphaData m-by-n matrix of double or uint8		
	<i>The transparency data</i> . A matrix of non-NaN values specifying the transparency of each face or vertex of the object. The Al phaData can be of class double or uint8.		
	MATLAB determines the transparency in one of three ways:		
	• Using the elements of Al phaDat a as transparency values (Al phaDat aMappi ng set to none).		
	 Using the elements of Al phaData as indices into the current alphamap (Al phaDataMappi ng set to di rect). 		
	• Scaling the elements of Al phaData to range between the minimum and maximum values of the axes ALim property (Al phaDataMapping set to scaled, the default).		
	AlphaDataMapping none direct {scaled}		
	<i>Transparency mapping method</i> . This property determines how MATLAB interprets indexed alpha data. This property can be any of the following:		
	 none - The transparency values of Al phaData are between 0 and 1 or are clamped to this range (the default). 		
	• scal ed - Transform the Al phaData to span the portion of the alphamap indicated by the axes ALi m property, linearly mapping data values to alpha values.		
	• di rect - use the Al phaData as indices directly into the alphamap. When not scaled, the data are usually integer values ranging from 1 to l ength(al phamap). MATLAB maps values less than 1 to the first alpha value in the alphamap, and values greater than l ength(al phamap) to the		

last alpha value in the alphamap. Values with a decimal portion are fixed to the nearest, lower integer. If Al phaData is an array uni t8 integers, then the indexing begins at 0 (i.e., MATLAB maps a value of 0 to the first alpha value in the alphamap).

```
Anbi entStrength scalar >= 0 and <= 1
```

Strength of ambient light. This property sets the strength of the ambient light, which is a nondirectional light source that illuminates the entire scene. You must have at least one visible light object in the axes for the ambient light to be visible. The axes Ambi entLi ghtCol or property sets the color of the ambient light, which is therefore the same on all objects in the axes.

You can also set the strength of the diffuse and specular contribution of light objects. See the surface DiffuseStrength and SpecularStrength properties.

BackFaceLighting unlit | lit | reverselit

Face lighting control. This property determines how faces are lit when their vertex normals point away from the camera.

- unl i t face is not lit
- lit face lit in normal way
- reverselit face is lit as if the vertex pointed towards the camera

This property is useful for discriminating between the internal and external surfaces of an object. See Back Face Lighting for an example.

BusyAction cancel | {queue}

Callback routine interruption. The BusyAct i on property enables you to control how MATLAB handles events that potentially interrupt executing callback routines. If there is a callback routine executing, subsequently invoked callback routines always attempt to interrupt it. If the Interrupt i bl e property of the object whose callback is executing is set to on (the default), then interruption occurs at the next point where the event queue is processed. If the Interrupt i bl e property is off, the BusyAct i on property (of the object owning the executing callback) determines how MATLAB handles the event. The choices are:

• cancel – discard the event that attempted to execute a second callback routine.

• queue – queue the event that attempted to execute a second callback routine until the current callback finishes.

ButtonDownFcn string or function handle

Button press callback routine. A callback routine that executes whenever you press a mouse button while the pointer is over the surface object. Define this routine as a string that is a valid MATLAB expression or the name of an M-file. The expression executes in the MATLAB workspace.

See Function Handle Callbacks for information on how to use function handles to define the callback function.

CData matrix

Vertex colors. A matrix containing values that specify the color at every point in ZData. If you set the FaceCol or property to texturemap, CData does not need to be the same size as ZData. In this case, MATLAB maps CData to conform to the surface defined by ZData.

You can specify color as indexed values or true color. Indexed color data specifies a single value for each vertex. These values are either scaled to map linearly into the current colormap (see caxi s) or interpreted directly as indices into the colormap, depending on the setting of the CDataMapping property.

True color defines an RGB value for each vertex. If the coordinate data (XData for example) are contained in *m*-by-*n* matrices, then CData must be an *m*-by-*n*-3 array. The first page contains the red components, the second the green components, and the third the blue components of the colors.

On computer displays that cannot display true color (e.g., 8-bit displays), MATLAB uses dithering to approximate the RGB triples using the colors in the figure's Col ormap and Di thermap. By default, Di thermap uses the col orcube(64) colormap. You can also specify your own dithermap.

CDataMapping {scaled} | direct

Direct or scaled color mapping. This property determines how MATLAB interprets indexed color data used to color the surface. (If you use true color specification for CData, this property has no effect.)

• scal ed – transform the color data to span the portion of the colormap indicated by the axes CLim property, linearly mapping data values to colors. See the caxi s reference page for more information on this mapping.

• di rect – use the color data as indices directly into the colormap. The color data should then be integer values ranging from 1 to length(colormap). MATLAB maps values less than 1 to the first color in the colormap, and values greater than length(colormap) to the last color in the colormap. Values with a decimal portion are fixed to the nearest, lower integer.

Children matrix of handles

Always the empty matrix; surface objects have no children.

Clipping {on} | off

Clipping to axes rectangle. When Cl i ppi ng is on, MATLAB does not display any portion of the surface that is outside the axes rectangle.

CreateFcn string or function handle

Callback routine executed during object creation. This property defines a callback routine that executes when MATLAB creates a surface object. You must define this property as a default value for surfaces. For example, the statement,

```
set(0, 'DefaultSurfaceCreateFcn',...
'set(gcf, ''DitherMap'', my_dithermap)')
```

defines a default value on the root level that sets the figure Di therMap property whenever you create a surface object. MATLAB executes this routine after setting all surface properties. Setting this property on an existing surface object has no effect.

The handle of the object whose CreateFcn is being executed is accessible only through the root CallbackObject property, which you can query using gcbo.

See Function Handle Callbacks for information on how to use function handles to define the callback function.

DeleteFcn string or function handle

Delete surface callback routine. A callback routine that executes when you delete the surface object (e.g., when you issue a delete command or clear the axes or figure). MATLAB executes the routine before destroying the object's properties so these values are available to the callback routine.

The handle of the object whose DeleteFcn is being executed is accessible only through the root CallbackObject property, which you can query using gcbo.

See Function Handle Callbacks for information on how to use function handles to define the callback function.

DiffuseStrength scalar >= 0 and <= 1

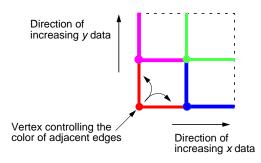
Intensity of diffuse light. This property sets the intensity of the diffuse component of the light falling on the surface. Diffuse light comes from light objects in the axes.

You can also set the intensity of the ambient and specular components of the light on the surface object. See the Ambi entStrength and Specul arStrength properties.

EdgeAlpha {scalar = 1} | flat | interp

Transparency of the surface edges. This property can be any of the following:

- scal ar A single non-Nan scalar value between 0 and 1 that controls the transparency of all the edges of the object. 1 (the default) is fully opaque and 0 means completely transparent.
- flat The alpha data (Al phaData) value for the first vertex of the face determines the transparency of the edges.
- interp Linear interpolation of the alpha data (Al phaData) values at each vertex determine the transparency of the edge.


Note that you must specify Al phaData as a matrix equal in size to ZData to use fl at or interp EdgeAl pha.

EdgeColor {ColorSpec} | none | flat | interp

Color of the surface edge. This property determines how MATLAB colors the edges of the individual faces that make up the surface:

- Col orSpec A three-element RGB vector or one of the MATLAB predefined names, specifying a single color for edges. The default EdgeCol or is black. See Col orSpec for more information on specifying color.
- none Edges are not drawn.

• flat — The CData value of the first vertex for a face determines the color of each edge.

• interp — Linear interpolation of the CData values at the face vertices determines the edge color.

EdgeLighting {none} | flat | gouraud | phong

Algorithm used for lighting calculations. This property selects the algorithm used to calculate the effect of light objects on surface edges. Choices are:

- none Lights do not affect the edges of this object.
- flat The effect of light objects is uniform across each edge of the surface.
- gouraud The effect of light objects is calculated at the vertices and then linearly interpolated across the edge lines.
- phong The effect of light objects is determined by interpolating the vertex normals across each edge line and calculating the reflectance at each pixel. Phong lighting generally produces better results than Gouraud lighting, but takes longer to render.

EraseMode {normal } | none | xor | background

Erase mode. This property controls the technique MATLAB uses to draw and erase surface objects. Alternative erase modes are useful for creating animated sequences, where control of the way individual objects redraw is necessary to improve performance and obtain the desired effect.

 normal — Redraw the affected region of the display, performing the three-dimensional analysis necessary to ensure that all objects are rendered correctly. This mode produces the most accurate picture, but is the slowest. The other modes are faster, but do not perform a complete redraw and are therefore less accurate.

- none Do not erase the surface when it is moved or destroyed. While the object is still visible on the screen after erasing with EraseMode none, you cannot print it because MATLAB stores no information about its former location.
- xor Draw and erase the surface by performing an exclusive OR (XOR) with each pixel index of the screen behind it. Erasing the surface does not damage the color of the objects behind it. However, surface color depends on the color of the screen behind it and is correctly colored only when over the axes background Col or, or the figure background Col or if the axes Col or is set to none.
- background Erase the surface by drawing it in the axes' background Col or, or the figure background Col or if the axes Col or is set to none. This damages objects that are behind the erased object, but surface objects are always properly colored.

Printing with Non-normal Erase Modes. MATLAB always prints figures as if the EraseMode of all objects is normal. This means graphics objects created with EraseMode set to none, xor, or background can look different on screen than on paper. On screen, MATLAB may mathematically combine layers of colors (e.g., XORing a pixel color with that of the pixel behind it) and ignore three-dimensional sorting to obtain greater rendering speed. However, these techniques are not applied to the printed output.

You can use the MATLAB getframe command or other screen capture application to create an image of a figure containing non-normal mode objects.

FaceAlpha {scalar = 1} | flat | interp | texturemap

Transparency of the surface faces. This property can be any of the following:

- scal ar A single non-NaN scalar value between 0 and 1 that controls the transparency of all the faces of the object. 1 (the default) is fully opaque and 0 is completely transparent (invisible).
- fl at The values of the alpha data (Al phaData) determine the transparency for each face. The alpha data at the first vertex determines the transparency of the entire face.
- interp Bilinear interpolation of the alpha data (Al phaData) at each vertex determine the transparency of each face.
- texturemap Use transparency for the texturemap.

Note that you must specify Al phaData as a matrix equal in size to ZData to use fl at or interp FaceAl pha.

FaceColorColorSpec | none | {flat} | interp

Color of the surface face. This property can be any of the following:

- Col orSpec A three-element RGB vector or one of the MATLAB predefined names, specifying a single color for faces. See Col orSpec for more information on specifying color.
- none Do not draw faces. Note that edges are drawn independently of faces.
- flat The values of CData determine the color for each face of the surface. The color data at the first vertex determines the color of the entire face.
- interp Bilinear interpolation of the values at each vertex (the CData) determines the coloring of each face.
- texturemap Texture map the CData to the surface. MATLAB transforms the color data so that it conforms to the surface. (See the texture mapping example.)

FaceLighting{none}| flat| gouraud| phong

Algorithm used for lighting calculations. This property selects the algorithm used to calculate the effect of light objects on the surface. Choices are:

- none Lights do not affect the faces of this object.
- fl at The effect of light objects is uniform across the faces of the surface. Select this choice to view faceted objects.
- gouraud The effect of light objects is calculated at the vertices and then linearly interpolated across the faces. Select this choice to view curved surfaces.
- phong The effect of light objects is determined by interpolating the vertex normals across each face and calculating the reflectance at each pixel. Select this choice to view curved surfaces. Phong lighting generally produces better results than Gouraud lighting, but takes longer to render.

HandleVisibility {on} | callback | off

Control access to object's handle by command-line users and GUIs. This property determines when an object's handle is visible in its parent's list of children. This property is useful for preventing command-line users from

accidentally drawing into or deleting a figure that contains only user interface devices (such as a dialog box).

Handles are always visible when HandleVisibility is on.

Setting Handl eVi si bi l i ty to cal l back causes handles to be visible from within callback routines or functions invoked by callback routines, but not from within functions invoked from the command line. This provides a means to protect GUIs from command-line users, while allowing callback routines to have complete access to object handles.

Setting Handl eVi si bility to off makes handles invisible at all times. This may be necessary when a callback routine invokes a function that might potentially damage the GUI (such as evaluating a user-typed string), and so temporarily hides its own handles during the execution of that function.

When a handle is not visible in its parent's list of children, it cannot be returned by functions that obtain handles by searching the object hierarchy or querying handle properties. This includes get, findobj, gca, gcf, gco, newplot, cl a, cl f, and cl ose.

When a handle's visibility is restricted using callback or off, the object's handle does not appear in its parent's Children property, figures do not appear in the root's CurrentFigure property, objects do not appear in the root's CallbackObj ect property or in the figure's CurrentObj ect property, and axes do not appear in their parent's CurrentAxes property.

You can set the root ShowHi ddenHandl es property to on to make all handles visible, regardless of their Handl eVi si bility settings (this does not affect the values of the Handl eVi si bility properties).

Handles that are hidden are still valid. If you know an object's handle, you can set and get its properties, and pass it to any function that operates on handles.

HitTest {on} | off

Selectable by mouse click. Hi tTest determines if the surface can become the current object (as returned by the gco command and the figure CurrentObj ect property) as a result of a mouse click on the surface. If Hi tTest is off, clicking on the surface selects the object below it (which maybe the axes containing it).

Interruptible {on} | off

Callback routine interruption mode. The Interruptible property controls whether a surface callback routine can be interrupted by subsequently invoked callback routines. Only callback routines defined for the ButtonDownFcn are affected by the Interruptible property. MATLAB checks for events that can interrupt a callback routine only when it encounters a drawnow, figure, getframe, or pause command in the routine. See the BusyActi on property for related information.

LineStyle {-} | -- | : | -. | none

Edge line type. This property determines the line style used to draw surface edges. The available line styles are shown in this table.

Symbol	Line Style
_	solid line (default)
	dashed line
:	dotted line
	dash-dot line
none	no line

LineWidth scalar

Edge line width. The width of the lines in points used to draw surface edges. The default width is 0.5 points (1 point = 1/72 inch).

Marker marker symbol (see table)

Marker symbol. The Marker property specifies symbols that display at vertices. You can set values for the Marker property independently from the Li neStyl e property. You can specify these markers.

Marker Specifier	Description
+	plus sign
0	circle
*	asterisk
	point
Х	cross
S	square
d	diamond
٨	upward pointing triangle
V	downward pointing triangle
>	right pointing triangle
<	left pointing triangle
р	five-pointed star (pentagram)
h	six-pointed star (hexagram)
none	no marker (default)

MarkerEdgeColor none | {auto} | flat | ColorSpec

Marker edge color. The color of the marker or the edge color for filled markers (circle, square, diamond, pentagram, hexagram, and the four triangles).

- none specifies no color, which makes nonfilled markers invisible.
- auto uses the same color as the EdgeCol or property.
- flat uses the CData value of the vertex to determine the color of the maker edge.
- Col or Spec defines a single color to use for the edge (see Col or Spec for more information).

MarkerFaceColor {none} | auto | flat | ColorSpec

Marker face color. The fill color for markers that are closed shapes (circle, square, diamond, pentagram, hexagram, and the four triangles).

- none makes the interior of the marker transparent, allowing the background to show through.
- auto uses the axes Col or for the marker face color.
- flat uses the CData value of the vertex to determine the color of the face.
- Col orSpec defines a single color to use for all marker on the surface (see Col orSpec for more information).

MarkerSize size in points

Marker size. A scalar specifying the marker size, in points. The default value for MarkerSi ze is six points (1 point = 1/72 inch). Note that MATLAB draws the point marker at 1/3 the specified marker size.

MeshStyle {both} | row | column

Row and column lines. This property specifies whether to draw all edge lines or just row or column edge lines.

- both draws edges for both rows and columns.
- row draws row edges only.
- col umn draws column edges only.

Normal Mode {auto} | manual

MATLAB -generated or user-specified normal vectors. When this property is aut o, MATLAB calculates vertex normals based on the coordinate data. If you specify your own vertex normals, MATLAB sets this property to manual and does not generate its own data. See also the VertexNormal s property.

Parent handle

Surface's parent object. The parent of a surface object is the axes in which it is displayed. You can move a surface object to another axes by setting this property to the handle of the new parent.

Selected on | {off}

Is object selected? When this property is on, MATLAB displays a dashed bounding box around the surface if the SelectionHi ghl i ght property is also

on. You can, for example, define the ButtonDownFcn to set this property, allowing users to select the object with the mouse.

SelectionHighlight {on} | off

Objects highlight when selected. When the Selected property is on, MATLAB indicates the selected state by drawing a dashed bounding box around the surface. When Selecti onHi ghlight is off, MATLAB does not draw the handles.

Specul arCol orReflectancescalar in the range 0 to 1

Color of specularly reflected light. When this property is 0, the color of the specularly reflected light depends on both the color of the object from which it reflects and the color of the light source. When set to 1, the color of the specularly reflected light depends only on the color or the light source (i.e., the light object Col or property). The proportions vary linearly for values in between.

Specul arExponent scalar >= 1

Harshness of specular reflection. This property controls the size of the specular spot. Most materials have exponents in the range of 5 to 20.

Specul arStrength scalar >= 0 and <= 1

Intensity of specular light. This property sets the intensity of the specular component of the light falling on the surface. Specular light comes from light objects in the axes.

You can also set the intensity of the ambient and diffuse components of the light on the surface object. See the Ambi entStrength and DiffuseStrength properties. Also see the material function.

Tag string

User-specified object label. The Tag property provides a means to identify graphics objects with a user-specified label. This is particularly useful when constructing interactive graphics programs that would otherwise need to define object handles as global variables or pass them as arguments between callback routines. You can define Tag as any string.

Type string (read only)

Class of the graphics object. The class of the graphics object. For surface objects, Type is always the string ' surface'.

UIContextMenu handle of a uicontextmenu object

Associate a context menu with the surface. Assign this property the handle of a uicontextmenu object created in the same figure as the surface. Use the ui contextmenu function to create the context menu. MATLAB displays the context menu whenever you right-click over the surface.

UserData matrix

User-specified data. Any matrix you want to associate with the surface object. MATLAB does not use this data, but you can access it using the set and get commands.

VertexNormals vector or matrix

Surface normal vectors. This property contains the vertex normals for the surface. MATLAB generates this data to perform lighting calculations. You can supply your own vertex normal data, even if it does not match the coordinate data. This can be useful to produce interesting lighting effects.

Visible {on} | off

Surface object visibility. By default, all surfaces are visible. When set to off, the surface is not visible, but still exists and you can query and set its properties.

XData vector or matrix

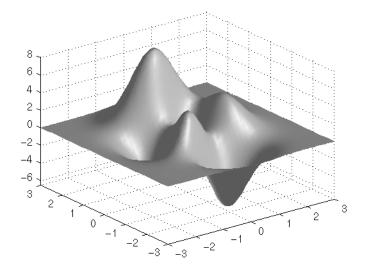
X-coordinates. The *x*-position of the surface points. If you specify a row vector, surface replicates the row internally until it has the same number of columns as ZData.

YData vector or matrix

Y-coordinates. The *y*-position of the surface points. If you specify a row vector, surface replicates the row internally until it has the same number of rows as ZData.

ZData matrix

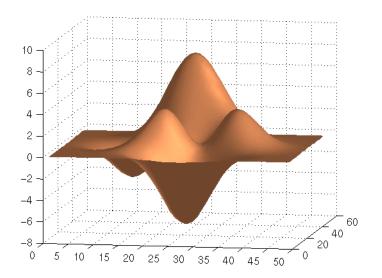
Z-coordinates. Z-position of the surface points. See the Description section for more information.


Purpose	Surface plot with colormap-based lighting
Syntax	<pre>surfl(Z) surfl(X, Y, Z) surfl(, 'light') surfl(, s) surfl(X, Y, Z, s, k) h = surfl()</pre>
Description	The surfl function displays a shaded surface based on a combination of ambient, diffuse, and specular lighting models.
	surfl (Z) and surfl (X, Y, Z) create three-dimensional shaded surfaces using the default direction for the light source and the default lighting coefficients for the shading model. X, Y, and Z are vectors or matrices that define the x , y , and z components of a surface.
	surfl(, 'light') produces a colored, lighted surface using a MATLAB light object. This produces results different from the default lighting method, $surfl(, 'cdata')$, which changes the color data for the surface to be the reflectance of the surface.
	surfl $(, s)$ specifies the direction of the light source. s is a two- or three-element vector that specifies the direction from a surface to a light source. s = [sx sy sz] or s = [azi muth el evati on]. The default s is 45° counterclockwise from the current view direction.
	surfl (X, Y, Z, s, k) specifies the reflectance constant. k is a four-element vector defining the relative contributions of ambient light, diffuse reflection, specular reflection, and the specular shine coefficient. $k = [ka \ kd \ ks \ shine]$ and defaults to $[.55, .6, .4, 10]$.
	h = surfl() returns a handle to a surface graphics object.
Remarks	For smoother color transitions, use colormaps that have linear intensity variations (e.g., gray, copper, bone, pi nk).
	The ordering of points in the X, Y, and Z matrices define the inside and outside of parametric surfaces. If you want the opposite side of the surface to reflect the

light source, use surfl(X', Y', Z'). Because of the way surface normal vectors are computed, surfl requires matrices that are at least 3-by-3.

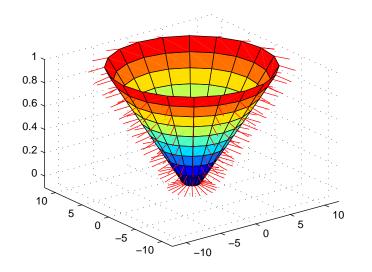
Examples

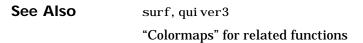
View peaks using colormap-based lighting.


[x, y] = meshgrid(-3: 1/8: 3); z = peaks(x, y); surfl(x, y, z); shading interp colormap(gray); axis([-3 3 -3 3 -8 8])

To plot a lighted surface from a view direction other than the default.

```
view([10 10])
grid on
hold on
surfl(peaks)
shading interp
colormap copper
```





See Also col ormap, shadi ng, l i ght "Creating Surfaces and Meshes" for functions related to surfaces "Lighting" for functions related to lighting

surfnorm

Purpose	Compute and display 3-D surface normals	
Syntax	<pre>surfnorm(Z) surfnorm(X, Y, Z) [Nx, Ny, Nz] = surfnorm()</pre>	
Description	The surfnorm function computes surface normals for the surface defined by X, Y, and Z. The surface normals are unnormalized and valid at each vertex. Normals are not shown for surface elements that face away from the viewer.	
	surfnorm(Z) and $surfnorm(X, Y, Z)$ plot a surface and its surface normals. Z is a matrix that defines the z component of the surface. X and Y are vectors or matrices that define the x and y components of the surface.	
	[Nx, Ny, Nz] = surfnorm() returns the components of the three-dimensional surface normals for the surface.	
Remarks	The direction of the normals is reversed by calling surfnorm with transposed arguments:	
	<pre>surfnorm(X', Y', Z')</pre>	
	surfl uses surfnorm to compute surface normals when calculating the reflectance of a surface.	
Algorithm	The surface normals are based on a bicubic fit of the data in X, Y, and Z. For each vertex, diagonal vectors are computed and crossed to form the normal.	
Examples	Plot the normal vectors for a truncated cone.	
	<pre>[x, y, z] = cylinder(1:10); surfnorm(x, y, z) axis([-12 12 -12 12 -0.1 1])</pre>	

Singular value decomposition
s = svd(X) [U, S, V] = svd(X) [U, S, V] = svd(X, 0)
The svd command computes the matrix singular value decomposition.
s = svd(X) returns a vector of singular values.
$[U, S, V] = svd(X)$ produces a diagonal matrix S of the same dimension as X, with nonnegative diagonal elements in decreasing order, and unitary matrices U and V so that $X = U^*S^*V'$.
[U, S, V] = svd(X, 0) produces the "economy size" decomposition. If X is m-by-n with $m > n$, then svd computes only the first n columns of U and S is n-by-n.
For the matrix
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
the statement
[U, S, V] = svd(X)
produces
$U = \begin{bmatrix} -0.1525 & -0.8226 & -0.3945 & -0.3800 \\ -0.3499 & -0.4214 & 0.2428 & 0.8007 \\ -0.5474 & -0.0201 & 0.6979 & -0.4614 \\ -0.7448 & 0.3812 & -0.5462 & 0.0407 \end{bmatrix}$ S = $\begin{bmatrix} 14.2691 & 0 \\ 0 & 0.6268 \end{bmatrix}$

0	0
0	0
V =	
- 0. 6414	0.7672
- 0. 7672	- 0. 6414

The economy size decomposition generated by

[U, S, V] = svd(X, 0)

produces

U	=		
		- 0. 1525	- 0. 8226
		- 0. 3499	-0.4214
		-0.5474	- 0. 0201
		- 0. 7448	0. 3812
S	=		
		14. 2691	0
		0	0. 6268
V	=		
		- 0. 6414	0.7672
		- 0. 7672	- 0. 6414

Algorithm

svd uses LAPACK routines to compute the singular value decomposition.

Matrix	Routine
Real	DGESVD
Complex	ZGESVD

Diagnostics If the limit of 75 QR step iterations is exhausted while seeking a singular value, this message appears:


Solution will not converge.

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, *LAPACK User's Guide*

(http://www.netlib.org/lapack/lug/lapack_lug.html), Third Edition, SIAM, Philadelphia, 1999.

Purpose	A few singular values
Syntax	s = svds(A) s = svds(A, k) s = svds(A, k, 0) [U, S, V] = svds(A,)
Description	svds(A) computes the five largest singular values and associated singular vectors of the matrix A.
	$svds(A,k)$ $\;$ computes the k largest singular values and associated singular vectors of the matrix A.
	svds(A,k,0) $$ computes the k smallest singular values and associated singular vectors.
	With one output argument, ${\bf s}$ is a vector of singular values. With three output arguments and if A is m-by-n:
	• U is m-by-k with orthonormal columns
	• S is k-by-k diagonal
	• V is n-by-k with orthonormal columns
	• U*S*V' is the closest rank k approximation to A
Algorithm	svds(A, k) uses eigs to find the k largest magnitude eigenvalues and corresponding eigenvectors of B = [0 A; A' 0].
	svds(A, k, 0) uses eigs to find the 2k smallest magnitude eigenvalues and corresponding eigenvectors of B = [0 A; A' 0], and then selects the k positive eigenvalues and their eigenvectors.
Example	<pre>west0479 is a real 479-by-479 sparse matrix. svd calculates all 479 singular values. svds picks out the largest and smallest singular values. load west0479 s = svd(full(west0479)) sl = svds(west0479, 4) ss = svds(west0479, 6, 0)</pre>

These plots show some of the singular values of west 0479 as computed by ${\rm svd}$ and ${\rm svds}.$

The largest singular value of west0479 can be computed a few different ways:

svds(west0479, 1) =
3. 189517598808622e+05

max(svd(full(west0479))) =
 3.18951759880862e+05

norm(full(west0479)) =
3.189517598808623e+05

and estimated:

normest(west0479) =
 3.189385666549991e+05

See Also

svd, ei gs

Purpose	Switch among several cases based on expression
Syntax	<pre>switch switch_expr case case_expr statement,, statement case { case_expr1, case_expr2, case_expr3, } statement,, statement</pre>
	otherwise statement,,statement end
Discussion	The switch statement syntax is a means of conditionally executing code. In particular, switch executes one set of statements selected from an arbitrary number of alternatives. Each alternative is called a <i>case</i> , and consists of:
	• The case statement
	One or more case expressions
	One or more statements
	In its basic syntax, switch executes the statements associated with the first case where <i>switch_expr</i> == <i>case_expr</i> . When the case expression is a cell array (as in the second case above), the case_expr matches if any of the elements of the cell array match the switch expression. If no case expression matches the switch expression, then control passes to the otherwi se case (if it exists). After the case is executed, program execution resumes with the statement after the end.
	The switch_expr can be a scalar or a string. A scalar switch_expr matches a case_expr if switch_expr==case_expr. A string switch_expr matches a case_expr if strcmp(switch_expr, case_expr) returns 1 (true).
	Note for C Programmers Unlike the C language switch construct, the MATLAB switch does not "fall through." That is, switch executes only the first matching case, subsequent matching cases do not execute. Therefore,

break statements are not used.

switch

Examples	To execute a certain block of code based on what the string, method, is set to,
	<pre>method = 'Bilinear';</pre>
	switch lower(method)
	<pre>case {'linear', 'bilinear'}</pre>
	disp('Method is linear')
	case 'cubic'
	disp('Method is cubic')
	case 'nearest'
	disp('Method is nearest')
otl	otherwi se
	disp('Unknown method.')
end	end
	Method is linear
See Also	case, end, if, otherwise, while

Purpose	Symmetric ap	pproximate minimum degree permutation
Syntax	<pre>p = symamd(s p = symamd(s [p, stats] = [p, stats] =</pre>	S, knobs)
Description	permutation than S. To fin spones(M *M	S) for a symmetric positive definite matrix S, returns the vector p such that $S(p, p)$ tends to have a sparser Cholesky factor ad the ordering for S, symamd constructs a matrix M such that) = spones (S), and then computes $p = col amd(M)$. The symamd also work well for symmetric indefinite matrices.
	S must be squ	are; only the strictly lower triangular part is referenced.
	entries are re permutation	alar. If S is n-by-n, rows and columns with more than knobs*n emoved prior to ordering, and ordered last in the output p. If the knobs parameter is not present, then arms('wh_frac').
	stats is an o validity of the	ptional vector that provides data about the ordering and the e matrix S.
	<pre>stats(1)</pre>	Number of dense or empty rows ignored by symamd
	stats(2)	Number of dense or empty columns ignored by symamd
	stats(3)	Number of garbage collections performed on the internal data structure used by symamd (roughly of size 8. 4*nnz(tril(S, -1)) + 9n integers)
	stats(4)	0 if the matrix is valid, or 1 if invalid
	stats(5)	Rightmost column index that is unsorted or contains duplicate entries, or 0 if no such column exists
	stats(6)	Last seen duplicate or out-of-order row index in the column index given by $stats(5)$, or 0 if no such row index exists
	stats(7)	Number of duplicate and out-of-order row indices

Although, MATLAB built-in functions generate valid sparse matrices, a user may construct an invalid sparse matrix using the MATLAB C or Fortran APIs and pass it to symamd. For this reason, symamd verifies that S is valid:

- If a row index appears two or more times in the same column, symamd ignores the duplicate entries, continues processing, and provides information about the duplicate entries in stats(4:7).
- If row indices in a column are out of order, symamd sorts each column of its internal copy of the matrix S (but does not repair the input matrix S), continues processing, and provides information about the out-of-order entries in stats(4: 7).
- If S is invalid in any other way, symamd cannot continue. It prints an error message, and returns no output arguments (p or stats).

The ordering is followed by a symmetric elimination tree post-ordering.

Note symamd tends to be faster than symmmd and tends to return a better ordering.

See Also col amd, col mmd, col perm, spparms, symmmd, symrcm

ReferencesThe authors of the code for symamd are Stefan I. Larimore and Timothy A. Davis
(davi s@ci se. ufl. edu), University of Florida. The algorithm was developed in
collaboration with John Gilbert, Xerox PARC, and Esmond Ng, Oak Ridge
National Laboratory. Sparse Matrix Algorithms Research at the University of
Florida: http://www.ci se. ufl.edu/research/sparse/

Purpose	Symbolic	factorization analysis
Syntax	count = a count = a	<pre>symbfact(A) symbfact(A, 'col') symbfact(A, 'sym') , parent, post, R] = symbfact()</pre>
Description	triangula of A, assu	symbfact(A) returns the vector of row counts for the upper r Cholesky factor of a symmetric matrix whose upper triangle is that ming no cancellation during the factorization. symbfact should be ther than chol(A).
	count =	symbfact(A, 'col') analyzes A'*A (without forming it explicitly).
	count =	<pre>symbfact(A, 'sym') is the same as count = symbfact(A).</pre>
	[count, h, parent, post, R] = symbfact() has several optional return values.	
	h	Height of the elimination tree
	parent	The elimination tree itself
	post	Postordering permutation of the elimination tree
	R	0-1 matrix whose structure is that of chol (A)
See Also	chol,etr	ee, treel ayout

symmlq

Purpose	Symmetric LQ method
Syntax	<pre>x = symml q(A, b) symml q(A, b, tol) symml q(A, b, tol, maxit) symml q(A, b, tol, maxit, M) symml q(A, b, tol, maxit, M1, M2) symml q(A, b, tol, maxit, M1, M2, x0) symml q(afun, b, tol, maxit, m1fun, m2fun, x0, p1, p2,) [x, flag] = symml q(A, b,) [x, flag, relres] = symml q(A, b,) [x, flag, relres, iter] = symml q(A, b,) [x, flag, relres, iter, resvec] = symml q(A, b,) [x, flag, relres, iter, resvec, resveccg] = symml q(A, b,)</pre>
Description	$x = symml q(A, b)$ attempts to solve the system of linear equations $A^*x=b$ for x. The n-by-n coefficient matrix A must be symmetric but need not be positive definite. It should also be large and sparse. The column vector b must have length n. A can be a function afun such that $afun(x)$ returns A^*x . If symml q converges, a message to that effect is displayed. If symml q fails to converge after the maximum number of iterations or halts for any reason, a warning message is printed displaying the relative residual norm(b- A^*x)/norm(b) and the iteration number at which the method stopped or failed.
	symml $q(A, b, tol)$ specifies the tolerance of the method. If tol is [], then symml q uses the default, 1e-6.
	symml $q(A, b, tol, maxit)$ specifies the maximum number of iterations. If maxit is [], then symml q uses the default, min(n, 20).
	symml q(A, b, tol, maxit, M) and symml q(A, b, tol, maxit, M1, M2) use the symmetric positive definite preconditioner Mor M = M1*M2 and effectively solve the system $i nv(sqrt(M))*A*inv(sqrt(M))*y = inv(sqrt(M))*b$ for y and then return $x = inv(sqrt(M))*y$. If M is [] then symml q applies no preconditioner. M can be a function that returns M\x.

symml q(A, b, tol, maxit, M1, M2, x0) specifies the initial guess. If x0 is [], then symml q uses the default, an all-zero vector.

symml q(afun, b, tol, maxit, m1fun, m2fun, x0, p1, p2, ...) passes parameters p1, p2, ... to functions afun(x, p1, p2, ...), m1fun(x, p1, p2, ...), and m2fun(x, p1, p2, ...).

[x, flag] = symmlq(A, b, tol, maxit, M1, M2, x0, p1, p2, ...) also returns a convergence flag.

Flag	Convergence
0	symmlq converged to the desired tolerance tol within maxit iterations.
1	symml q iterated maxi t times but did not converge.
2	Preconditioner M was ill-conditioned.
3	symml q stagnated. (Two consecutive iterates were the same.)
4	One of the scalar quantities calculated during symml q became too small or too large to continue computing.
5	Preconditioner M was not symmetric positive definite.

Whenever fl ag is not 0, the solution x returned is that with minimal norm residual computed over all the iterations. No messages are displayed if the fl ag output is specified.

[x, flag, relres] = symmlq(A, b, tol, maxit, M1, M2, x0, p1, p2, ...) also returns the relative residual norm(b-A*x)/norm(b). If flag is 0, relres <= tol.

[x, flag, relres, iter] = symmlq(A, b, tol, maxit, M1, M2, x0, p1, p2, ...) also returns the iteration number at which x was computed, where 0 <= iter <= maxit.

symmlq

Examples

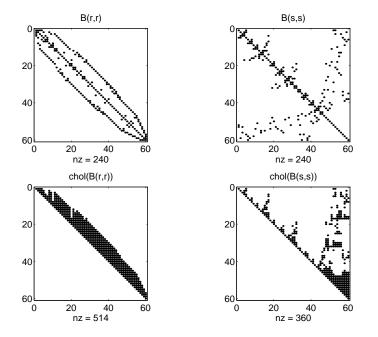
```
[x, flag, relres, iter, resvec] =
symml q(A, b, tol, maxit, M1, M2, x0, p1, p2, ...) also returns a vector of
estimates of the symml q residual norms at each iteration, including
norm(b-A*x0).
[x, flag, relres, iter, resvec, resveccg] =
symml q(A, b, tol, maxit, M1, M2, x0, p1, p2, ...) also returns a vector of
estimates of the conjugate gradients residual norms at each iteration.
Example 1.
  n = 100:
  on = ones(n, 1);
  A = spdiags([-2*on 4*on - 2*on], -1:1, n, n);
  b = sum(A, 2);
  tol = 1e - 10;
  maxit = 50; M1 = spdiags(4*on, 0, n, n);
  x = symmlq(A, b, tol, maxit, M1, [], []);
  symmlq converged at iteration 49 to a solution with relative
  residual 4.3e-015
Alternatively, use this matrix-vector product function
  function y = afun(x, n)
      y = 4 * x;
      y(2:n) = y(2:n) - 2 * x(1:n-1);
```

as input to symml q.

x1 = symml q(@afun, b, tol, maxit, M1, [], [], n);

y(1: n-1) = y(1: n-1) - 2 * x(2: n);

Example 2.


Use a symmetric indefinite matrix that fails with pcg.

The iterate returned (number 0) has relative residual 1
However, symml q can handle the indefinite matrix A.
x = symmlq(A, b, 1e-6, 40); symmlq converged at iteration 39 to a solution with relative residual 1.3e-007
bi cg, bi cgstab, cgs, l sqr, gmres, mi nres, pcg, qmr @ (function handle), / (slash)
[1] Barrett, R., M. Berry, T. F. Chan, et al., <i>Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods</i> , SIAM, Philadelphia, 1994.
[2] Paige, C. C. and M. A. Saunders, "Solution of Sparse Indefinite Systems of Linear Equations." <i>SIAM J. Numer. Anal.</i> , Vol.12, 1975, pp. 617-629.

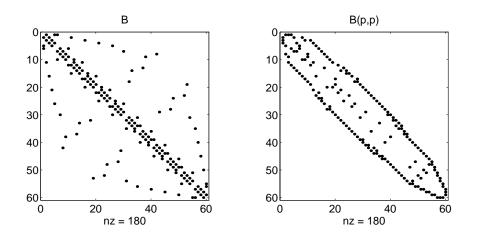
symmmd

Purpose	Sparse symmetric minimum degree ordering
Syntax	p = symmet(S)
Description	p = symmmd(S) returns a symmetric minimum degree ordering of S. For a symmetric positive definite matrix S, this is a permutation p such that $S(p, p)$ tends to have a sparser Cholesky factor than S. Sometimes symmmd works well for symmetric indefinite matrices too.
Remarks	The minimum degree ordering is automatically used by \backslash and $/$ for the solution of symmetric, positive definite, sparse linear systems.
	Some options and parameters associated with heuristics in the algorithm can be changed with spparms.
Algorithm	The symmetric minimum degree algorithm is based on the column minimum degree algorithm. In fact, symmmd(A) just creates a nonzero structure K such that K' *K has the same nonzero structure as A and then calls the column minimum degree code for K.
Examples	Here is a comparison of reverse Cuthill-McKee and minimum degree on the Bucky ball example mentioned in the symrcm reference page.
	<pre>B = bucky+4*speye(60); r = symrcm(B); p = symmmd(B); R = B(r,r); S = B(p,p); subplot(2, 2, 1), spy(R), title('B(r,r)') subplot(2, 2, 2), spy(S), title('B(s,s)') subplot(2, 2, 3), spy(chol(R)), title('chol(B(r,r))') subplot(2, 2, 4), spy(chol(S)), title('chol(B(s,s))')</pre>

symmmd

Even though this is a very small problem, the behavior of both orderings is typical. RCM produces a matrix with a narrow bandwidth which fills in almost completely during the Cholesky factorization. Minimum degree produces a structure with large blocks of contiguous zeros which do not fill in during the factorization. Consequently, the minimum degree ordering requires less time and storage for the factorization.

See Also col amd, col mmd, col perm, symamd, symrcm


References [1] Gilbert, John R., Cleve Moler, and Robert Schreiber, "Sparse Matrices in MATLAB: Design and Implementation," *SIAM Journal on Matrix Analysis and Applications 13*, 1992, pp. 333-356.

symrcm

Purpose	Sparse reverse Cuthill-McKee ordering
Syntax	r = symrcm(S)
Description	r = symrcm(S) returns the symmetric reverse Cuthill-McKee ordering of S. This is a permutation r such that $S(r, r)$ tends to have its nonzero elements closer to the diagonal. This is a good preordering for LU or Cholesky factorization of matrices that come from long, skinny problems. The ordering works for both symmetric and nonsymmetric S.
	For a real, symmetric sparse matrix, S, the eigenvalues of $S(r, r)$ are the same as those of S, but $eig(S(r, r))$ probably takes less time to compute than $eig(S)$.
Algorithm	The algorithm first finds a pseudoperipheral vertex of the graph of the matrix. It then generates a level structure by breadth-first search and orders the vertices by decreasing distance from the pseudoperipheral vertex. The implementation is based closely on the SPARSPAK implementation described by George and Liu.
Examples	The statement B = bucky uses an M-file in the demos toolbox to generate the adjacency graph of a truncated icosahedron. This is better known as a soccer ball, a Buckminster Fuller geodesic dome (hence the name bucky), or, more recently, as a 60-atom carbon molecule. There are 60 vertices. The vertices have been ordered by numbering half of them from one hemisphere, pentagon by pentagon; then reflecting into the other hemisphere and gluing the two halves together. With this numbering, the matrix does not have a particularly narrow bandwidth, as the first spy plot shows subpl ot (1, 2, 1), spy(B), title('B') The reverse Cuthill-McKee ordering is obtained with p = symrcm(B); R = B(p, p);

The spy plot shows a much narrower bandwidth.

subplot(1, 2, 2), spy(R), title('B(p, p)')

This example is continued in the reference pages for symmmd.

The bandwidth can also be computed with

[i, j] = find(B);bw = max(i-j) + 1

The bandwidths of B and R are 35 and 12, respectively.

See Also col amd, col mmd, col perm, symamd, symmmd

References [1] George, Alan and Joseph Liu, *Computer Solution of Large Sparse Positive Definite Systems*, Prentice-Hall, 1981.

[2] Gilbert, John R., Cleve Moler, and Robert Schreiber, "Sparse Matrices in MATLAB: Design and Implementation," to appear in *SIAM Journal on Matrix Analysis*, 1992. A slightly expanded version is also available as a technical report from the Xerox Palo Alto Research Center.

symvar

Purpose	Determine the symbolic variables in an expression
Syntax	<pre>symvar 'expr' s = symvar('expr')</pre>
Description	<pre>symvar 'expr' searches the expression, expr, for identifiers other than i, j, pi, i nf, nan, eps, and common functions. symvar displays those variables that it finds or, if no such variable exists, displays an empty cell array, {}. s = symvar('expr') returns the variables in a cell array of strings, s. If no such variable exists, s is an empty cell array.</pre>
Examples	<pre>symvar finds variables beta1 and x, but skips pi and the cos function. symvar 'cos(pi*x - beta1)' ans = 'beta1' 'x'</pre>
See Also	findstr

Purpose	MATLAB startup M-file for user-defined options
Description	startup automatically executes the master M-file matlabrc.mand, if it exists, startup.m, when MATLAB starts. On multiuser or networked systems, matlabrc.m is reserved for use by the system manager. The file matlabrc.m invokes the file startup.mif it exists on the MATLAB search path.
	You can create a startup. m file in your own MATLAB directory. The file can include physical constants, Handle Graphics defaults, engineering conversion factors, or anything else you want predefined in your workspace.
	There are other way to predefine aspects of MATLAB. See "Startup Options" and "Setting Preferences" in the MATLAB documentation.
Algorithm	Only matl abrc. m is actually invoked by MATLAB at startup. However, matl abrc. m contains the statements
	if exist('startup')==2 startup end
	that invoke <code>startup.m.</code> You can extend this process to create additional startup M-files, if required.
See Also	matlabrc, matlabroot, quit

system

Purpose	Run operating system command and return result
Description	system(' command') calls upon the operating system to run command, for example dir or ls, and directs the output to MATLAB. If command runs successfully, ans is 0. If command fails or does not exist on your operating system, ans is a nonzero value and an explanatory message appears.
	[status, result] = system('command') calls upon the operating system to run command, and directs the output to MATLAB. If command runs successfully, status is 0 and result contains the output from command. If command fails or does not exist on your operating system, status is a nonzero value, result is an empty matrix, and an explanatory message appears.
Examples	Display the current directory by accessing the operating system.
	<pre>system('pwd')</pre>
	MATLAB displays the current directory and shows that the command executed correctly because ans is 0.
	D:/mymfiles/
	ans =
	0 Similarly, run the operating system pwd command and assign the current directory to curr_di r.
	[s, curr_dir] = system('pwd')
	MATLAB displays
	s = 0
	curr_dir = D:/mymfiles/
See Also	! (exclamation point), dos, perl, uni x

Purpose	Tangent
Syntax	Y = tan(X)
Description	The tan function operates element-wise on arrays. The function's domains and ranges include complex values. All angles are in radians.
	Y = tan(X) returns the circular tangent of each element of X.
Examples	Graph the tangent function over the domain $-\pi/2 < x < \pi/2$. x = (-pi/2) + 0.01: 0.01: (pi/2) - 0.01; plot (x, tan(x)), grid on
	-80 -100 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

The expression $t\,an(\,pi\,/2)\,$ does not evaluate as infinite but as the reciprocal of the floating point accuracy eps since $pi\,$ is only a floating-point approximation to the exact value of π .

Definition

The tangent can be defined as

$$\tan(z) = \frac{\sin(z)}{\cos(z)}$$

Algorithmtan uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc.
business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

See Also atan, atan2, tanh

tanh

Purpose	Hyperbolic tangent
Syntax	Y = tanh(X)
Description	The tanh function operates element-wise on arrays. The function's domains and ranges include complex values. All angles are in radians.
	Y = tanh(X) returns the hyperbolic tangent of each element of X.
Examples	Graph the hyperbolic tangent function over the domain $-5 \le x \le 5$.
	x = -5: 0.01: 5; plot(x, tanh(x)), grid on
Definition	The hyperbolic tangent can be defined as
	$tanh(z) = \frac{sinh(z)}{cosh(z)}$
Algorithm	tanh uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc. business, by Kwok C. Ng, and others. For information about FDLIBM, see http://www.netlib.org.

tanh

See Also atan, atan2, tan

tempdir

Purpose	Return the name of the system's temporary directory
Syntax	tmp_dir = tempdir
Description	<pre>tmp_dir = tempdir returns the name of the system's temporary directory, if one exists. This function does not create a new directory.</pre>
	See Opening Temporary Files and Directories for more information.
See Also	tempname

tempname

Purpose	Unique name for temporary file
Syntax	<pre>tmp_nam = tempname</pre>
Description	tmp_nam = tempname returns a unique string, tmp_nam, suitable for use as a temporary filename.
	Note The filename that tempname generates is not guaranteed to be unique; however, it is likely to be so.
	See Opening Temporary Files and Directories for more information.
See Also	tempdi r

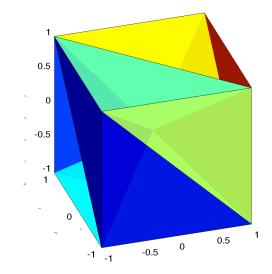
terminal

Purpose	Set graphics terminal type Note The terminal function will be removed in a future release.		
Syntax	termi nal termi nal (' <i>type</i>	2')	
Description	To add terminal-specific settings (e.g., escape characters, line length), edit the file <code>termi</code> nal . m.		
	termi nal displays a menu of graphics terminal types, prompts for a choice, then configures MATLAB to run on the specified terminal. termi nal (' <i>type</i> ') accepts a terminal type string. Valid ' <i>type</i> ' strings are shown in the table.		
	Turpo	Description	
	Type tek401x	Description	
		Tektronix 4010/4014	
	tek4100	Tektronix 4100	
	tek4105	Tektronix 4105	
	retro	Retrographics card	
	sg100	Selanar Graphics 100	
	sg200	Selanar Graphics 200	
	vt240tek	VT240 & VT340 Tektronix mode	
	ergo	Ergo terminal	
	graphon	Graphon terminal	
	citoh	C.Itoh terminal	

xterm, Tektronix graphics

xtermtek

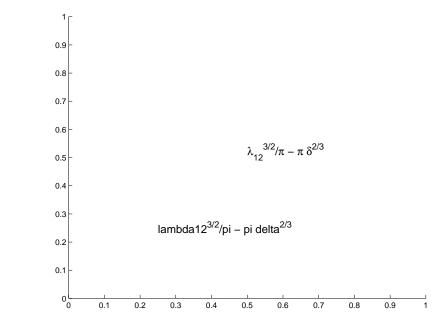
terminal

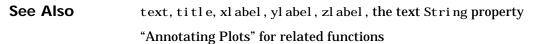

Туре	Description (Continued)
wyse	Wyse WY-99GT
kermi t	MS-DOS Kermit 2.23
hp2647	Hewlett-Packard 2647
hds	Human Designed Systems

tetramesh

Purpose	Tetrahedron mesh plot
Syntax	<pre>tetramesh(T, X, c) tetramesh(T, X) h = tetramesh() tetramesh(, 'param', 'value', 'param', 'value')</pre>
Description	tetramesh(T, X, c) displays the tetrahedrons defined in the m-by-4 matrix T as mesh. T is usually the output of del aunayn. A row of T contains indices into X of the vertices of a tetrahedron. X is an n-by-3 matrix, representing n points in 3 dimension. The tetrahedron colors are defined by the vector C, which is used as indices into the current colormap.
	Note If T is the output of del aunay3, then X is the concatenation of the del aunay3 input arguments x, y, z interpreted as column vectors, i.e., $X = [x(:) \ y(:) \ z(:)].$
	tetramesh(T, X) uses $C = 1:m$ as the color for the m tetrahedrons. Each tetrahedron has a different color (modulo the number of colors available in the current colormap).
	h = tetramesh() returns a vector of tetrahedron handles. Each element of h is a handle to the set of patches forming one tetrahedron. You can use these handles to view a particular tetrahedron by turning the patch 'Visible' property 'on' or 'off'.
	tetramesh(, 'param', 'value', 'param', 'value') allows additional patch property name/property value pairs to be used when displaying the tetrahedrons. For example, the default transparency parameter is set to 0. 9. You can overwrite this value by using the property name/property value pair ('FaceAl pha', value) where value is a number between 0 and 1. See Patch Properti es for information about the available properties.
Examples	Generate a 3-dimensional Delaunay tesselation, then use tetramesh to visualize the tetrahedrons that form the corresponding simplex. $d = [-1 \ 1];$

```
[x, y, z] = meshgrid(d, d, d); % A cube
x = [x(:);0];
y = [y(:); 0];
z = [z(:);0];
% [x, y, z] are corners of a cube plus the center.
X = [x(:) y(:) z(:)];
Tes = del aunayn(X)
Tes =
   9
     1
        5
           6
   3
     9
        1
           5
  2
     9
        1
           6
   2
     39
           4
   2
     3 9
           1
   7
     9
        5
           6
   7
     3
        9
           5
   8
     79
           6
   8 2 9
           6
   8
    2 9 4
   8
     39
           4
     7
   8
        3 9
```


tetramesh(Tes, X); camorbit(20, 0)



See Also del aunayn, patch, Patch Properties, trimesh, trisurf

texlabel

Purpose	Produce TeX format from character string
Syntax	texlabel(f) texlabel(f,'literal')
Description	texl abel (f) converts the MATLAB expression f into the TeX equivalent for use in text strings. It processes Greek variable names (e.g., lambda, delta, etc.) into a string that displays as actual Greek letters.
	texl abel (f, 'literal') prints Greek variable names as literals.
	If the string is too long to fit into a figure window, then the center of the expression is replaced with a tilde ellipsis (~~~).
Examples	You can use ${\tt texl}$ abel as an argument to the ${\tt title}, {\tt xlabel}, {\tt ylabel}, {\tt zlabel},$ and ${\tt text}$ commands. For example,
	title(texlabel(' $sin(sqrt(x^2 + y^2))/sqrt(x^2 + y^2)')$)
	By default, $texl$ abel translates Greek variable names to the equivalent Greek letter. You can select literal interpretation by including the literal argument. For example, compare these two commands.
	<pre>text(.5,.5, texlabel('lambda12^(3/2)/pi - pi*delta^(2/3)')) text(.25,.25, texlabel('lambda12^(3/2)/pi - pi*delta^(2/3)','literal'))</pre>

text

Purpose	Create text object in current axes
Syntax	<pre>text(x, y, ' string') text(x, y, z, ' string') text(' PropertyName', PropertyValue) h = text()</pre>
Description	text is the low-level function for creating text graphics objects. Use text to place character strings at specified locations.
	text(x,y,'string') adds the string in quotes to the location specified by the point $(x,y).$
	text(x, y, z, 'string') adds the string in 3-D coordinates.
	text(x, y, z, 'string', 'PropertyName', PropertyValue) adds the string in quotes to location defined by the coordinates and uses the values for the specified text properties. See the text property list section at the end of this page for a list of text properties.
	text(' <i>PropertyName</i> ', PropertyValue) omits the coordinates entirely and specifies all properties using property name/property value pairs.
	h = text() returns a column vector of handles to text objects, one handle per object. All forms of the text function optionally return this output argument.
	See the String property for a list of symbols, including Greek letters.
Remarks	Specify the text location coordinates (the x, y, and z arguments) in the data units of the current axes (see "Examples"). The Extent, Verti cal Al i gnment, and Hori zontal Al i gnment properties control the positioning of the character string with regard to the text location point.
	If the coordinates are vectors, text writes the string at all locations defined by the list of points. If the character string is an array the same length as x , y , and z , text writes the corresponding row of the string array at each point specified.
	When specifying strings for multiple text objects, the string can be
	• a cell array of strings

- a padded string matrix
- a string vector using vertical slash characters ('|') as separators.

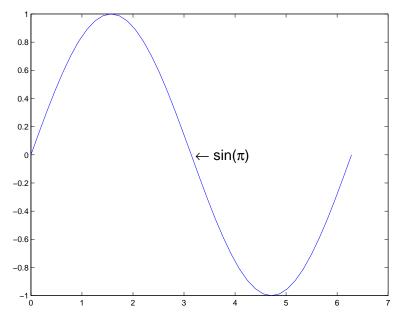
Each element of the specified string array creates a different text object.

When specifying the string for a single text object, cell arrays of strings and padded string matrices result in a text object with a multiline string, while vertical slash characters are not interpreted as separators and result in a single line string containing vertical slashes.

text is a low-level function that accepts property name/property value pairs as input arguments, however; the convenience form,

text(x, y, z, 'string')

is equivalent to:


text('XData', x, 'YData', y, 'ZData', z, 'String', 'string')

You can specify other properties only as property name/property value pairs. See the text property list at the end of this page for a description of each property. You can specify properties as property name/property value pairs, structure arrays, and cell arrays (see the set and get reference pages for examples of how to specify these data types).

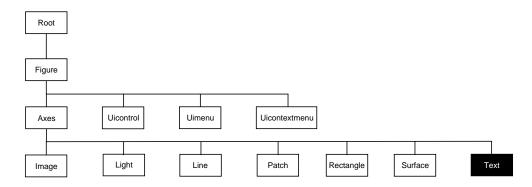
text does not respect the setting of the figure or axes NextPl ot property. This allows you to add text objects to an existing axes without setting hold to on.

Examples The statements,

plot(0: pi/20: 2*pi, sin(0: pi/20: 2*pi))
text(pi,0,' \leftarrow sin(\pi)', 'FontSize', 18)

annotate the point at (pi, 0) with the string $\sin(\pi)$.

The statement,


 $text(x, y, '\ite^{i \omega\tau} = cos(\omega\tau) + i \ sin(\omega\tau)')$ uses embedded TeX sequences to produce:

$$e^{i\omega\tau} = \cos(\omega\tau) + i\sin(\omega\tau)$$

See Also gtext, int2str, num2str, title, xlabel, ylabel, zlabel

The "Labeling Graphs" topic in the online *Using MATLAB Graphics* manual discusses positioning text.

Object Hierarchy

Setting Default Properties

You can set default text properties on the axes, figure, and root levels.

set(0, 'DefaulttextProperty', PropertyValue...)
set(gcf, 'DefaulttextProperty', PropertyValue...)
set(gca, 'DefaulttextProperty', PropertyValue...)

Where *Property* is the name of the text property and PropertyValue is the value you are specifying. Use set and get to access text properties.

Property List The following table lists all text properties and provides a brief description of each. The property name links take you to an expanded description of the properties.

Property Name	Property Description	Property Value
Defining the character string		
Edi ti ng	Enable or disable editing mode.	Values: on, off Default: off
Interpreter	Enable or disable TeX interpretation	Values: tex, none Default: tex
String	The character string (including list of TeX character sequences)	Value: character string

Property Name	Property Description	Property Value
Positioning the character string		
Extent	Position and size of text object	Values: [left, bottom, width, height]
Horizontal Alignment	Horizontal alignment of text string	Values: left, center, right Default: left
Position	Position of text Extent rectangle	Values: [x, y, z] coordinates Default: [] empty matrix
Rotation	Orientation of text object	Values: scalar (degrees) Default: 0
Units	Units for Extent and Position properties	Values: pi xel s, normal i zed i nches, centi meters, poi nts, data Default: data
Verti cal Al i gnment	Vertical alignment of text string	Values: top, cap, mi ddl e, basel i ne, bottom Default: mi ddl e
Text Bounding Box		
BackgroundColor	Color of text extent rectangle	Values: Col orSpec Default: none
EdgeCol or	Color of edge drawn around text extent rectangle	Values: Col orSpec Default: none
Li neWi dth	Width of the line (in points) use to draw the box drawn around text extent rectangle	Values: scalar (points) Default: 0.5
Li neStyl e	Style of the line use to draw the box drawn around text extent rectangle	Values: –, ––, : , –. , none Default: –
Margi n	Distance in pixels from the text extent to the edge of the box enclosing the text.	Values: scalar (pixels) Default: 2

Property Name	Property Description	Property Value
Specifying the Font		
FontAngl e	Select italic-style font	Values: normal, italic, oblique Default: normal
FontName	Select font family	Values: a font supported by your system or the string Fi xedWi dth Default: Hel veti ca
FontSi ze	Size of font	Values: size in FontUnits Default: 10 points
FontUni ts	Units for FontSi ze property	Values: points, normal i zed, i nches, centimeters, pixels Default: points
FontWei ght	Weight of text characters	Values: light, normal, demi, bold Default: normal
Controlling the Appeara	nce	
Cl i ppi ng	Clipping to axes rectangle	Values: on, off Default: on
EraseMode	Method of drawing and erasing the text (useful for animation)	Values: normal, none, xor, background Default: normal
Sel ecti onHi ghl i ght	Highlight text when selected (Sel ected property set to on)	Values: on, off Default: on
Vi si bl e	Make the text visible or invisible	Values: on, off Default: on
Col or	Color of the text	ColorSpec
Controlling Access to Tex	t Objects	

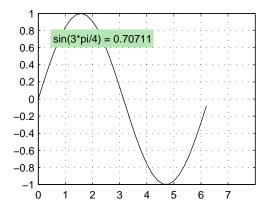
Property Name	Property Description	Property Value
Handl eVi si bi l i ty	Determines if and when the the text's handle is visible to other functions	Values: on, callback, off Default: on
HitTest	Determines if the text can become the current object (see the figure Current0bj ect property)	Values: on, off Default: on
General Information A	About Text Objects	
Chi l dren	Text objects have no children	Values: [] (empty matrix)
Parent	The parent of a text object is always an axes object	Value: axes handle
Selected	Indicate whether the text is in a "selected" state.	Values: on, off Default: off
Tag	User-specified label	Value: any string Default: '' (empty string)
Туре	The type of graphics object (read only)	Value: the string 'text'
UserData	User-specified data	Values: any matrix Default: [] (empty matrix)
Controlling Callback R	outine Execution	
BusyActi on	Specifies how to handle callback routine interruption	Values: cancel , queue Default: queue
ButtonDownFcn	Defines a callback routine that executes when a mouse button is pressed on over the text	Values: string or function handle Default: ' ' (empty string)
CreateFcn	Defines a callback routine that executes when an text is created	Values: string or function handle Default: ' ' (empty string)

Property Name	operty Name Property Description		
DeleteFcn	Defines a callback routine that executes when the text is deleted (via cl ose or del et e)	Values: string or function handle Default: ' ' (empty string)	
Interrupti bl e	Determines if callback routine can be interrupted	Values: on, off Default: on (can be interrupted)	
UI Context Menu	Associates a context menu with the text	Values: handle of a uicontextmenu	

Text Properties

ModifyingYou can set and query graphics object properties using the property editor orPropertiesthe set and get commands.

- The Property Editor is an interactive tool that enables you to see and change object property values.
- The set and get commands enable you to set and query the values of properties


To change the default value of properties see Setting Default Property Values.

Text PropertyThis section lists property names along with the types of values each accepts.DescriptionsCurly braces { } enclose default values.

BackgroundColor ColorSpec | {none}

Color of text extent rectangle. This property enables you define a color for the rectangle that encloses the text Extent. For example, the following code creates a text object that labels a plot and sets the background color to light green.

```
text(3*pi/4, sin(3*pi/4), ...
['sin(3*pi/4) = ', num2str(sin(3*pi/4))], ...
'Horizontal Al ignment', 'center', ...
'BackgroundCol or', [.7 .9 .7]);
```


For additional features, see the following properties:

- EdgeCol or Color of the rectangle's edge (none by default).
- Li neStyle Style of the rectangle's edge line (first set EdgeCol or).

- Li neWi dth Width of the rectangle's edge line (first set EdgeCol or)
- Margin Increase the size of the rectangle by adding a margin to the existing text extent rectangle.

See also "Drawing Text in a Box" in the MATLAB Graphics documentation for an example using background color with contour labels.

BusyAction cancel | {queue}

Callback routine interruption. The BusyActi on property enables you to control how MATLAB handles events that potentially interrupt executing callback routines. If there is a callback routine executing, subsequently invoked callback routines always attempt to interrupt it. If the Interrupti bl e property of the object whose callback is executing is set to on (the default), then interruption occurs at the next point where the event queue is processed. If the Interrupt ibl e property is set to off, the BusyActi on property (of the object owning the executing callback) determines how MATLAB handles the event. The choices are:

- $\bullet \ {\rm cancel} \ {\rm Discard}$ the event that attempted to execute a second callback routine
- queue Queue the event that attempted to execute a second callback routine until the current callback finishes

ButtonDownFcn string or function handle

Button press callback routine. A callback routine that executes whenever you press a mouse button while the pointer is over the text object. Define this routine as a string that is a valid MATLAB expression or the name of an M-file. The expression executes in the MATLAB workspace.

See Function Handle Callbacks for information on how to use function handles to define the callback function.

Children matrix (read only)

The empty matrix; text objects have no children.

Clipping on | {off}

Clipping mode. When Cl i ppi ng is on, MATLAB does not display any portion of the text that is outside the axes.

Color ColorSpec

Text color. A three-element RGB vector or one of the predefined names, specifying the text color. The default value for Col or is white. See Col orSpec for more information on specifying color.

CreateFcn string or function handle

Callback routine executed during object creation. This property defines a callback routine that executes when MATLAB creates a text object. You must define this property as a default value for text. For example, the statement,

```
set(0, 'DefaultTextCreateFcn', ...
'set(gcf, ''Pointer'', ''crosshair'')')
```

defines a default value on the root level that sets the figure Pointer property to a crosshair whenever you create a text object. MATLAB executes this routine after setting all text properties. Setting this property on an existing text object has no effect.

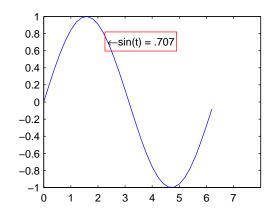
The handle of the object whose CreateFcn is being executed is accessible only through the root CallbackObject property, which you can query using gcbo.

See Function Handle Callbacks for information on how to use function handles to define the callback function.

DeleteFcn string or function handle

Delete text callback routine. A callback routine that executes when you delete the text object (e.g., when you issue a delete command or clear the axes or figure). MATLAB executes the routine before destroying the object's properties so these values are available to the callback routine.

The handle of the object whose DeleteFcn is being executed is accessible only through the root CallbackObject property, which you can query using gcbo.


See Function Handle Callbacks for information on how to use function handles to define the callback function.

```
EdgeColor ColorSpec | {none}
```

Color of edge drawn around text extent rectangle. This property enables you to specify the color of a box drawn around the text Extent. For example, the following code draws a red rectangle around text that labels a plot.

```
text(3*pi/4, sin(3*pi/4), ...
```

```
'\leftarrowsin(t) = .707',...
'EdgeColor', 'red');
```


For additional features, see the following properties:

- BackgroundCol or Color of the rectangle's interior (none by default).
- Li neStyle Style of the rectangle's edge line (first set EdgeCol or).
- Li neWi dth Width of the rectangle's edge line (first set EdgeCol or)
- Margin Increase the size of the rectangle by adding a margin to the existing text extent rectangle.

Editing on | {off}

Enable or disable editing mode. When this property is set to the default off, you cannot edit the text string interactively (i.e., you must change the String property to change the text). When this property is set to on, MATLAB places an insert cursor at the beginning of the text string and enables editing. To apply the new text string

- 1 Press the **ESC** key.
- 2 Clicking in any figure window (including the current figure).
- **3** Reset the Editing property to off.

MATLAB then updates the String property to contain the new text and resets the Editing property to off. You must reset the Editing property to on to resume editing.

EraseMode {normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses to draw and erase text objects. Alternative erase modes are useful for creating animated sequences where controlling the way individual objects redraw is necessary to improve performance and obtain the desired effect.

- normal Redraw the affected region of the display, performing the three-dimensional analysis necessary to ensure that all objects are rendered correctly. This mode produces the most accurate picture, but is the slowest. The other modes are faster, but do not perform a complete redraw and are therefore, less accurate.
- none Do not erase the text when it is moved or destroyed. While the object
 is still visible on the screen after erasing with EraseMode none, you cannot
 print it because MATLAB stores no information about its former location.
- xor Draw and erase the text by performing an exclusive OR (XOR) with each pixel index of the screen beneath it. When the text is erased, it does not damage the objects beneath it. However, when text is drawn in xor mode, its color depends on the color of the screen beneath it. It is correctly colored only when over axes background Col or, or the figure background Col or if the axes Col or is set to none.
- background Erase the text by drawing it in the axes background Col or, or the figure background Col or if the axes Col or is set to none. This damages objects that are behind the erased text, but text is always properly colored.

Printing with Nonnormal Erase Modes. MATLAB always prints figures as if the EraseMode of all objects is set to normal. This means graphics objects created with EraseMode set to none, xor, or background can look differently on screen than on paper. On screen, MATLAB may mathematically combine layers of colors (e.g., XORing a pixel color with that of the pixel behind it) and ignore three-dimensional sorting to obtain greater rendering speed. However, these techniques are not applied to the printed output.

You can use the MATLAB getframe command or other screen capture application to create an image of a figure containing nonnormal mode objects.

Extent position rectangle (read only)

Position and size of text. A four-element read-only vector that defines the size and position of the text string

[left, bottom, width, height]

If the Units property is set to data (the default), left and bottom are the x and y coordinates of the lower left corner of the text Extent.

For all other values of Units, left and bottom are the distance from the lower left corner of the axes position rectangle to the lower left corner of the text Extent. wi dth and height are the dimensions of the Extent rectangle. All measurements are in units specified by the Units property.

FontAngle {normal} | italic | oblique

Character slant. MATLAB uses this property to select a font from those available on your particular system. Generally, setting this property to i tal i c or obl i que selects a slanted font.

FontName A name, such as Couri er, or the string Fi xedWi dth

Font family. A string specifying the name of the font to use for the text object. To display and print properly, this must be a font that your system supports. The default font is Helvetica.

Specifying a Fixed-Width Font

If you want text to use a fixed-width font that looks good in any locale, you should set FontName to the string Fi xedWi dth:

```
set(text_handle, 'FontName', 'Fi xedWidth')
```

This eliminates the need to hard code the name of a fixed-width font, which may not display text properly on systems that do not use ASCII character encoding (such as in Japan where multibyte character sets are used). A properly written MATLAB application that needs to use a fixed-width font should set FontName to Fi xedWi dth (note that this string is case sensitive) and rely on Fi xedWi dthFontName to be set correctly in the end-user's environment.

End users can adapt a MATLAB application to different locales or personal environments by setting the root Fi xedWi dthFontName property to the appropriate value for that locale from startup. m.

Note that setting the root Fi xedWi dthFontName property causes an immediate update of the display to use the new font.

FontSize size in FontUnits

Font size. An integer specifying the font size to use for text in units determined by the FontUnits property. The default point size is 10 (1 point = 1/72 inch).

FontWeight light | {normal} | demi | bold

Weight of text characters. MATLAB uses this property to select a font from those available on your particular system. Generally, setting this property to bold or demi causes MATLAB to use a bold font.

```
FontUnits {points} | normalized | inches |
centimeters | pixels
```

Font size units. MATLAB uses this property to determine the units used by the FontSi ze property. Normalized units interpret FontSi ze as a fraction of the height of the parent axes. When you resize the axes, MATLAB modifies the screen FontSi ze accordingly. pi xel s, i nches, centimeters, and points are absolute units (1 point = 1/72 inch).

HandleVisibility {on} | callback | off

Control access to object's handle by command-line users and GUIs. This property determines when an object's handle is visible in its parent's list of children. Handl eVi si bility is useful for preventing command-line users from accidentally drawing into or deleting a figure that contains only user interface devices (such as a dialog box).

Handles are always visible when HandleVisibility is set to on.

Setting Handl eVi si bi l i ty to cal l back causes handles to be visible from within callback routines or functions invoked by callback routines, but not from within functions invoked from the command line. This provides a means to protect GUIs from command-line users, while allowing callback routines to have complete access to object handles.

Setting Handl eVi si bility to off makes handles invisible at all times. This may be necessary when a callback routine invokes a function that might potentially damage the GUI (such as evaluating a user-typed string), and so temporarily hides its own handles during the execution of that function.

When a handle is not visible in its parent's list of children, it cannot be returned by functions that obtain handles by searching the object hierarchy or querying handle properties. This includes get, findobj, gca, gcf, gco, newplot, cl a, cl f, and cl ose.

When a handle's visibility is restricted using callback or off:

- The object's handle does not appear in its parent's Children property.
- Figures do not appear in the root's CurrentFi gure property.
- Objects do not appear in the root's Call backObject property or in the figure's CurrentObject property.
- Axes do not appear in their parent's CurrentAxes property.

You can set the root ShowHi ddenHandl es property to on to make all handles visible, regardless of their Handl eVi si bility settings (this does not affect the values of the Handl eVi si bility properties).

Handles that are hidden are still valid. If you know an object's handle, you can set and get its properties, and pass it to any function that operates on handles.

HitTest {on} | off

Selectable by mouse click. Hi tTest determines if the text can become the current object (as returned by the gco command and the figure CurrentObj ect property) as a result of a mouse click on the text. If Hi tTest is set to off, clicking on the text selects the object below it (which is usually the axes containing it).

For example, suppose you define the button down function of an image (see the ButtonDownFcn property) to display text at the location you click on with the mouse.

First define the callback routine.

```
function bd_function
pt = get(gca, 'CurrentPoint');
text(pt(1, 1), pt(1, 2), pt(1, 3), ...
    '{\fontsize{20}\oplus} The spot to label',...
    'HitTest', 'off')
```

Now display an image, setting its ${\tt ButtonDownFcn}$ property to the callback routine.

```
load earth
image(X, 'ButtonDownFcn', 'bd_function'); colormap(map)
```

When you click on the image, MATLAB displays the text string at that location. With Hi tTest set to off, existing text cannot intercept any subsequent button

Text Properties

down events that occur over the text. This enables the image's button down function to execute.

HorizontalAlignment{left} | center | right

Horizontal alignment of text. This property specifies the horizontal justification of the text string. It determines where MATLAB places the string with regard to the point specified by the Position property. The following picture illustrates the alignment options.

Hori zontal Al i gnment viewed with the Verti cal Al i gnment set to middle (the default).

See the Extent property for related information.

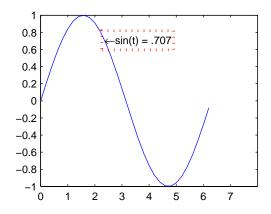
Interpreter {tex} | none

Interpret Tex instructions. This property controls whether MATLAB interprets certain characters in the String property as Tex instructions (default) or displays all characters literally. See the String property for a list of supported Tex instructions.

Interruptible {on} | off

Callback routine interruption mode. The Interrupti bl e property controls whether a text callback routine can be interrupted by subsequently invoked callback routines. Text objects have three properties that define callback routines: ButtonDownFcn, CreateFcn, and Del eteFcn. See the BusyActi on property for information on how MATLAB executes callback routines.

LineStyle {-} | -- | : | -. | none

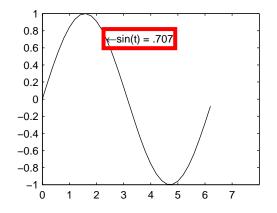

Edge line type. This property determines the line style used to draw the edges of the text Extent. The available line styles are shown in the following table.

Symbol	Line Style	
-	solid line (default)	
	dashed line	

Symbol	Line Style
:	dotted line
	dash-dot line
none	no line

For example, the following code draws a red rectangle wth a dotted line style around text that labels a plot.

```
text(3*pi/4, sin(3*pi/4), ...
    '\leftarrowsin(t) = .707',...
    'EdgeColor', 'red',...
    'LineWidth', 2, ...
    'LineStyle', ':');
```

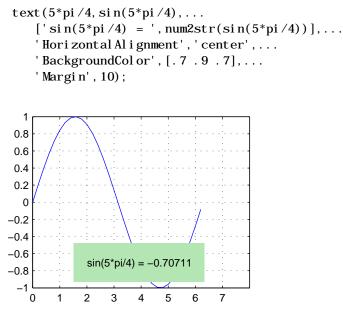


For additional features, see the following properties:

- BackgroundCol or Color of the rectangle's interior (none by default)
- EdgeCol or Color of the rectangle's edge (none by default)
- Li neWi dth Width of the rectangle's edge line (first set EdgeCol or)
- $\bullet\,$ Margin Increase the size of the rectangle by adding a margin to the existing text extent rectangle

LineWidth scalar (points)

Width of line used to draw text extent rectangle. When you set the text EdgeCol or property to a color (the default is none), MATLAB displays a rectangle around the text Extent. Use the Li neWi dth property to specify the width of the rectangle edge. For example, the following code draws a red rectangle around text that labels a plot and specifies a line width of 3 points:

```
text(3*pi/4, sin(3*pi/4),...
'\leftarrowsin(t) = .707',...
'EdgeColor', 'red',...
'LineWidth', 3);
```



For additional features, see the following properties:

- BackgroundCol or Color of the rectangle's interior (none by default)
- EdgeCol or Color of the rectangle's edge (none by default)
- Li neStyle style of the rectangle's edge line (first set EdgeCol or)
- Margin increase the size of the rectangle by adding a margin to the exsiting text extent rectangle

Margin scalar (pixels)

Distance between the text extent and the rectangle edge. When you specify a color for the BackgroundCol or or EdgeCol or text properties, MATLAB draws a rectangle around the area defined by the text Extent plus the value specified

by the Margi n. For example, the following code displays a light green rectangle with a 10-pixel margin.

For additional features, see the following properties:

- BackgroundCol or Color of the rectangle's interior (none by default)
- EdgeCol or Color of the rectangle's edge (none by default)
- Li neStyle Style of the rectangle's edge line (first set EdgeCol or)
- Li neWi dth Width of the rectangle's edge line (first set EdgeCol or)

Parent handle

Text object's parent. The handle of the text object's parent object. The parent of a text object is the axes in which it is displayed. You can move a text object to another axes by setting this property to the handle of the new parent.

Position [x, y, [z]]

Location of text. A two- or three-element vector, $[x \ y \ [z]]$, that specifies the location of the text in three dimensions. If you omit the z value, it defaults to 0. All measurements are in units specified by the Units property. Initial value is $[0 \ 0 \ 0]$.

Rotation scalar (default = 0)

Text orientation. This property determines the orientation of the text string. Specify values of rotation in degrees (positive angles cause counterclockwise rotation).

Selected on | {off}

Is object selected? When this property is set to on, MATLAB displays selection handles if the Sel ecti onHi ghl i ght property is also set to on. You can, for example, define the ButtonDownFcn to set this property, allowing users to select the object with the mouse.

SelectionHighlight {on} | off

Objects highlight when selected. When the Selected property is set to on, MATLAB indicates the selected state by drawing four edge handles and four corner handles. When SelectionHighlight is set to off, MATLAB does not draw the handles.

String string

The text string. Specify this property as a quoted string for single-line strings, or as a cell array of strings, or a padded string matrix for multiline strings. MATLAB displays this string at the specified location. Vertical slash characters are not interpreted as linebreaks in text strings, and are drawn as part of the text string. See Mathematical Symbols, Greek Letters, and TeX Characters for an example.

When the text Interpreter property is set to Tex (the default), you can use a subset of TeX commands embedded in the string to produce special characters such as Greek letters and mathematical symbols. The following table lists these characters and the character sequences used to define them.

Character Sequence	Symbol	Character Sequence	Symbol	Character Sequence	Symbol
\al pha	α	\upsil on	υ	\sim	~
\beta	β	\phi	φ	\l eq	≤
\gamma	γ	\chi	χ	\infty	~
\delta	δ	\ psi	ψ	\cl ubsui t	*

Text Properties

Character Sequence	Symbol	Character Sequence	Symbol	Character Sequence	Symbol
\epsil on	3	\omega	ω	\di amondsui t	•
\zeta	ζ	\Gamma	Γ	\heartsui t	•
\eta	η	\Delta	Δ	\spadesui t	٨
\theta	θ	\Theta	Θ	\l eftri ghtarrow	\leftrightarrow
\vartheta	θ	\Lambda	Λ	\leftarrow	\leftarrow
\iota	ι	\Xi	Ξ	\uparrow	\uparrow
\kappa	κ	\Pi	П	\rightarrow	\rightarrow
\l ambda	λ	\Si gma	Σ	\downarrow	\downarrow
\mu	μ	\Upsil on	Y	\ci rc	0
\nu	ν	\Phi	Φ	\pm	±
\xi	٤	\ Psi	Ψ	\geq	≥
\pi	π	\0mega	Ω	\propto	~
\rho	ρ	\foral l	\forall	\parti al	9
\sigma	σ	\exi sts	Э	\bullet	•
\varsigma	ς	\ni	Э	\di v	÷
\tau	τ	\cong	≅	\neq	≠
\equi v	=	\approx	~	\al eph	х
\I m	I	\ R e	R	\wp	Ø
\otimes	\otimes	\opl us	\oplus	\osl ash	Ø
\cap	\cap	\cup	U	\supset eq	⊇
\supset	\supset	\subseteq	⊆	\subset	C
\int	ſ	\in	E	\0	0

Character Sequence	Symbol	Character Sequence	Symbol	Character Sequence	Symbol
\rfloor	J	∖l cei l	Г	\nabl a	∇
\lfloor	L	\cdot		\ldots	
\perp	Ţ	\neg	-	\ prime	,
\wedge	^	\times	×	∖0	Ø
\rceil	1	\surd	\checkmark	\mid	
\vee	\vee	∖varpi	ω	\copyright	©
\langle	<	\rangle	>		

You can also specify stream modifiers that control the font used. The first four modifiers are mutually exclusive. However, you can use fontname in combination with one of the other modifiers:

- $\bf bold font$
- i t italics font
- \sl oblique font (rarely available)
- \mbox{rm} normal font
- \fontname{ fontname} specify the name of the font family to use.
- \fontsize{ fontsize} specify the font size in FontUnits.

Stream modifiers remain in effect until the end of the string or only within the context defined by braces $\{ \}$.

Specifying Subscript and Superscript Characters

The subscript character " $_$ " and the superscript character " $^$ " modify the character or substring defined in braces immediately following.

To print the special characters used to define the Tex strings when Interpreter is Tex, prefix them with the backslash "\" character: \\, $\{, \} \$.

See the example in the text reference page for more information.

When Interpreter is set to none, no characters in the String are interpreted, and all are displayed when the text is drawn.

Tag string

User-specified object label. The Tag property provides a means to identify graphics objects with a user-specified label. This is particularly useful when constructing interactive graphics programs that would otherwise need to define object handles as global variables or pass them as arguments between callback routines. You can define Tag as any string.

Typestring (read only)

Class of graphics object. For text objects, Type is always the string 'text'.

Units pixels | normalized | inches | centimeters | points | {data}

Units of measurement. This property specifies the units MATLAB uses to interpret the Extent and Position properties. All units are measured from the lower left corner of the axes plotbox.

- Normal i zed units map the lower left corner of the rectangle defined by the axes to (0,0) and the upper right corner to (1.0,1.0).
- pixels, inches, centimeters, and points are absolute units (1 point = $1/_{72}$ inch).
- data refers to the data units of the parent axes.

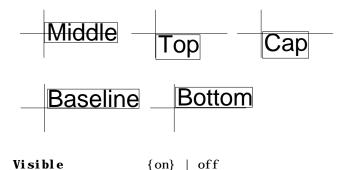
If you change the value of Units, it is good practice to return it to its default value after completing your computation so as not to affect other functions that assume Units is set to the default value.

UserData matrix

User-specified data. Any data you want to associate with the text object. MATLAB does not use this data, but you can access it using set and get.

UIContextMenu handle of a uicontextmenu object

Associate a context menu with the text. Assign this property the handle of a uicontextmenu object created in the same figure as the text. Use the ui contextmenu function to create the context menu. MATLAB displays the context menu whenever you right-click over the text.


VerticalAlignment top | cap | {middle} | baseline | bottom

Vertical alignment of text. This property specifies the vertical justification of the text string. It determines where MATLAB places the string with regard to the value of the Position property. The possible values mean

- top Place the top of the string's Extent rectangle at the specified *y*-position.
- cap Place the string so that the top of a capital letter is at the specified *y*-position.
- mi ddl e Place the middle of the string at specified *y*-position.
- basel i ne Place font baseline at the specified *y*-position.
- bottom Place the bottom of the string's Extent rectangle at the specified *y*-position.

The following picture illustrates the alignment options.

Text $Verti\,cal\,Al\,i\,gnment\,$ property viewed with the Hori zontal Al i gnment property set to left (the default).

Text visibility. By default, all text is visible. When set to off, the text is not visible, but still exists and you can query and set its properties.

Purpose	Read formatted data from text file
Graphical Interface	As an alternative to textread, use the Import Wizard. To activate the Import Wizard, select Import Data from the File menu.
Syntax	<pre>[A, B, C,] = textread('filename', 'format') [A, B, C,] = textread('filename', 'format', N) [] = textread(, 'param', 'value',)</pre>
Description	[A, B, C,] = textread('filename', 'format') reads data from the file 'filename' into the variables A, B, C, and so on, using the specified format, until the entire file is read. textread is useful for reading text files with a known format. Both fixed and free format files can be handled.
	textread matches and converts groups of characters from the input. Each input field is defined as a string of non-whitespace characters that extends to the next whitespace or delimiter character, or to the maximum field width. Repeated delimiter characters are significant, while repeated whitespace characters are treated as one.
	The format string determines the number and types of return arguments. The

The format string determines the number and types of return arguments. The number of return arguments is the number of items in the format string. The format string supports a subset of the conversion specifiers and conventions of the C language fscanf routine. Values for the format string are listed in the table below. Whitespace characters in the format string are ignored.

format	Action Output	
Literals (ordinary characters)	Ignore the matching characters. For example, in a file that has Dept followed by a number (for department number), to skip the Dept and read only the number, use 'Dept' in the format string.	None
%d	Read a signed integer value. Double array	
%u	Read an integer value. Double array	
%f	Read a floating point value.	Double array

textread

format	Action	Output
%s	Read a whitespace or delimiter- separated string.	Cell array of strings
%q	Read a string, which could be in double quotes.	Cell array of strings. Does not include the double quotes.
%с	Read characters, including white space.	Character array
%[]	Read the longest string containing characters specified in the brackets.	Cell array of strings
%[^]	Read the longest non-empty string containing characters that are not specified in the brackets.	Cell array of strings
%* instead of %	Ignore the matching characters specified by *.	No output
%w instead of %	Read field width specified by w. The %f format supports %w. pf, where w is the field width and p is the precision.	

[A, B, C, ...] = textread('filename', 'format', N) reads the data, reusing the format string N times, where N is an integer greater than zero. If N is smaller than zero, textread reads the entire file.

param	value	Action
whitespace	Any from the list below:	Treats vector of characters as whitespace. Default is ' $\b\t'$.
	\b \n \r \t	Space Backspace New line Carriage return Horizontal tab
delimiter	Delimiter character	Specifies delimiter character. Default is none.
expchars	Exponent characters	Default is eEdD.
bufsi ze	positive integer	Specifies the maximum string length, in bytes. Default is 4095.
headerlines	positive integer	Ignores the specified number of lines at the beginning of the file.
commentstyle	matl ab	Ignores characters after %
commentstyle	shel l	Ignores characters after #.
commentstyle	с	Ignores characters between /* and */.
commentstyle	C++	Ignores characters after //.

 $[\dots] = textread(\dots, 'param', 'value', \dots)$ customizes textread using param/value pairs, as listed in the table below.

Note When textread reads a consecutive series of whitespace values, it treats them as one whitespace. When it reads a consecutive series of del i miter values, it treats each as a separate delimiter.

Examples Example 1 – Read All Fields in Free Format File Using % The first line of mydata. dat is Sally Type1 12.34 45 Yes Read the first line of the file as a free format file using the % format. [names, types, x, y, answer] = textread('mydata.dat', '%s %s %f ... %d %s', 1) returns names = 'Sally' types ='Type1' x = 12.34000000000000 y = 45 answer = 'Yes'

Example 2 – Read as Fixed Format File, Ignoring the Floating Point Value The first line of mydata. dat is

Sally Type1 12. 34 45 Yes

Read the first line of the file as a fixed format file, ignoring the floating point value.

```
[names, types, y, answer] = textread('mydata.dat','%9c %5s %*f \ldots%2d %3s',1)
```

returns

```
names =
Sally
types =
'Type1'
y =
45
answer =
```

'Yes'

%*f in the format string causes textread to ignore the floating point value, in this case, 12. 34.

Example 3 – Read Using Literal to Ignore Matching Characters The first line of mydata. dat is

Sally Type1 12. 34 45 Yes

Read the first line of the file, ignoring the characters Type in the second field.

```
[names, typenum, x, y, answer] = textread('mydata.dat', '%s Type%d %f
%d %s', 1)
```

returns

```
names =
    'Sally'
typenum =
    1
x =
    12.3400000000000
y =
    45
answer =
    'Yes'
```

Type%d in the format string causes the characters Type in the second field to be ignored, while the rest of the second field is read as a signed integer, in this case, 1.

Example 4 – Read M-file into a Cell Array of Strings Read the file fft. m into cell array of strings.

```
file = textread('fft.m', '%s', 'delimiter', '\n', 'whitespace', '');
```

See Also dl mread, csvread, fscanf

ts and you can query and set its properties.

textwrap

Purpose	Return wrapped string matrix for given uicontrol
Syntax	<pre>outstring = textwrap(h, instring) [outstring, position] = textwrap(h, instring)</pre>
Description	outstring = textwrap(h, instring) returns a wrapped string cell array, outstring, that fits inside the uicontrol with handle h. instring is a cell array, with each cell containing a single line of text. outstring is the wrapped string matrix in cell array format. Each cell of the input string is considered a paragraph.
	[outstring, position]=textwrap(h, instring) returns the recommended position of the uicontrol in the units of the uicontrol. position considers the extent of the multiline text in the x and y directions.
Example	<pre>Place a textwrapped string in a uicontrol: pos = [10 10 100 10]; h = uicontrol ('Style', 'Text', 'Position', pos); string = {'This is a string for the uicontrol.',</pre>
	<pre>pos(4) = newpos(4); set(h, 'String', outstring, 'Position', [pos(1), pos(2), pos(3)+10, pos(4)])</pre>
See Also	ui control

Purpose	Stopwatch timer
Syntax	tic any statements toc t = toc
Description	ti c starts a stopwatch timer. toc prints the elapsed time since ti c was used. t = toc returns the elapsed time in t.
Examples	This example measures how the time required to solve a linear system varies with the order of a matrix. for $n = 1:100$ A = rand(n, n); b = rand(n, 1); tic x = A\b; t(n) = toc; end plot(t)
See Also	clock, cputime, etime, profile

timer

Purpose	Construct timer object
Syntax	<pre>T = timer T = timer('PropertyName1', PropertyValue1, 'PropertyName2', PropertyValue2,)</pre>
Description	T = timer constructs a timer object with default attributes.
	T = timer('PropertyName1', PropertyValue1, 'PropertyName2', PropertyValue2,) constructs a timer object in which the given Property name/value pairs are set on the object. See Timer Object Properties for a list of all the properties supported by the timer object.
	Note that the property name/property value pairs can be in any format supported by the set function, i.e., property/value string pairs, structures, and property/value cell array pairs.
Example	This example constructs a timer object with a timer callback function handle, mycallback, and a 10 second interval.
	<pre>t = timer('TimerFcn',@mycallback, 'Period', 10.0);</pre>
See Also	del ete, di sp, get, i sval i d, set, start, startat, stop, ti merfind, wai t
Timer Object Properties	The timer object supports the following properties that control its attributes. The table includes information about the data type of each property and its default value.

To view the value of the properties of a particular timer object, use the get function. To set the value of the properties of a timer object, use the set function.

Property Name	Property Description	Datatypes, Values, and Defaults
AveragePeri od	The average time between Ti merFcn executions since the timer started. Note: Value is NaN until timer executes two timer callbacks.	Datatype: doubl e Default: NaN Readonly: Always
BusyMode	 Action taken when a timer has to execute Ti merFcn before the completion of previous execution of Ti merFcn. ' drop' —Do not execute the function. ' error' —Generate an error. ' queue' —Execute function at next opportunity. 	Datatype: Enumerated string Values: 'drop' 'queue' 'error' Default: 'drop' Readonly: Only when Runni ng='on'
ErrorFcn	Function that the timer executes when an error occurs. This function executes before the StopFcn. See Creating Timer Callback Functions for more information.	Datatype: Text string, function handle, or cell array. Default: Readonly: Never
Execut i onMode	Determines how the timer object schedules timer events. See Timer Execution Modes for more information.	Datatype: Enumerated string Values: 'si ngl eShot' 'fi xedSpaci ng' 'fi xedDel ay' 'fi xedRate' Defaul t: 'si ngl eShot' Readonly: When Runni ng='on'
InstantPeri od	The time between the last two executions of TimerFcn.	Datatype: doubl e Default: NaN Readonly: Al ways

timer

Property Name	Property Description	Datatypes, Values, and Defaults
Name	User-supplied name	Datatype: Text string Default: 'timer- <i>i</i> ', where <i>i</i> is a number indicating the <i>i</i> th timer object created this session. Note: If you issue the cl ear cl asses command, the timer object resets <i>i</i> to 1. Readonly: Never
Peri od	Specifies the delay, in seconds, between executions of TimerFcn.	Datatype: doubl e Value: Any number <0.001 Default: 1.0 Readonly: When Runni ng=' on'
Runni ng	Indicates whether the timer is currently executing.	Datatype: Enumerated string: Values: 'off' 'on' Default: 'off' Readonly: Always
StartDel ay	Specifies the delay, in seconds, between the start of the timer and the first execution of the function specified in TimerFcn.	Datatype: doubl e Value: Any number <=0 Default: 0 Readonly: When Runni ng=' on'
StartFcn	Function the timer calls when it starts. See Creating Timer Callback Functions for more information.	Datatype: Text string, function handle, or cell array Default: Readonly: Never

Property Name	Property Description	Datatypes, Values, and Defaults
StopFcn	 Function the timer calls when it stops. The timer stops when: You call the timer stop function When the timer finishes executing TimerFcn, i.e., the value of TasksExecuted reaches the limit set by the TasksToExecute. An error occurs (The ErrorFcn is called first, followed by the StopFcn.) See Creating Timer Callback Functions for more information. 	Datatype: Text string, function handle, or cell array. Default: Readonly: Never
Tag	User supplied label	Datatype: Text string Default: ' ' (empty string)
TasksToExecute	Specifies the number of times the timer should execute the function specified in the TimerFcn property.	Datatype: doubl e Value: Any number <0 Default: 1 Readonly: Never
TasksExecuted	The number of times the timer has executed TimerFcn since the timer was started	Datatype: doubl e Value: Any number <=0 Default: 0 Readonly: Always
TimerFcn	Timer callback function. See Creating Timer Callback Functions for more information.	Datatype: Text string, function handle, or cell array. Default: Readonly: Never

timer

Property Name	Property Description	Datatypes, Values, and Defaults
Туре	Identifies the object type	Datatype: Text string Value: 'timer' Readonly: Always
UserData	User-supplied data	Datatype: User-defined Default: [] Readonly: Never

Purpose	Find timer objects
Syntax	<pre>out = timerfind out = timerfind('P1', V1, 'P2', V2,) out = timerfind(S) out = timerfind(obj, 'P1', V1, 'P2', V2,)</pre>
Description	out $\ = \ timerfind$ returns an array, out, of all the timer objects that exist in memory.
	out = timerfind('P1', V1, 'P2', V2,) returns an array, out, of timer objects whose property values match those passed as param-value pairs, P1, V1, P2, V2. Param-value pairs may be specified as a cell array.
	out = $timerfind(S)$ returns an array, out, of timer objects whose property values match those defined in the structure, S. The field names of S are timer object property names and the field values are the corresponding property values.
	out = timerfind(obj, 'P1', V1, 'P2', V2,) restricts the search for matching parameter/value pairs to the timer objects listed in obj. obj can be an array of timer objects.
	Note Param-value string pairs, structures, and param-value cell array pairs may be used in the same call to timerfind.
	Note that, for most properties, timerfind performs case-sensitive searches of property values. For example, if the value of an object's Name property is 'MyObj ect', timerfind will not find a match if you specify 'myObj ect'. Use the get function to determine the exact format of a property value. However, properties which have an enumerated list of possible values, are not case-sensitive. For example, timerfind will find an object with an ExecutionMode property value of 'singleShot' or 'singleshot'.
Example	This example uses timerfind to find timer objects with the specified property values.

```
t1 = timer('Tag', 'broadcastProgress', 'Period', 5);
t2 = timer('Tag', 'displayProgress');
out1 = timerfind('Tag', 'displayProgress')
out2 = timerfind({'Period', 'Tag'}, {5, 'broadcastProgress'})
```


title

Purpose	Add title to current axes
Syntax	<pre>title('string') title(fname) title(, 'PropertyName', PropertyValue,) h = title()</pre>
Description	Each axes graphics object can have one title. The title is located at the top and in the center of the axes.
	${\tt title('string')}$ outputs the string at the top and in the center of the current axes.
	title(fname) evaluates the function that returns a string and displays the string at the top and in the center of the current axes.
	title(, ' $PropertyName$ ', PropertyValue,) specifies property name and property value pairs for the text graphics object that title creates.
	h = title() returns the handle to the text object used as the title.
Examples	Display today's date in the current axes: title(date)
	Include a variable's value in a title:
	<pre>f = 70; c = (f-32) /1.8; title(['Temperature is ', num2str(c), 'C'])</pre>
	Include a variable's value in a title and set the color of the title to yellow:
	<pre>n = 3; title(['Case number #',int2str(n)],'Color','y')</pre>
	Include Greek symbols in a title:
	$title(' \in \{ omega \mid au \} = cos(omega \mid au) + isin(omega \mid au)')$
	Include a superscript character in a title:
	title(' $al pha^2$)

title

	Include a subscript character in a title: title('X_1') The text object String property lists the available symbols.
Remarks	title sets the Title property of the current axes graphics object to a new text graphics object. See the text String property for more information.
See Also	gtext, int2str, num2str, text, xl abel, yl abel, zl abel "Annotating Plots" for related functions Adding Titles to Graphs for more information on ways to add titles.

toeplitz

Purpose	Toeplitz matrix			
Syntax	T = toeplitz(c, r) T = toeplitz(r)			
Description	A <i>Toeplitz</i> matrix is defined by one row and one column. A <i>symmetric Toeplitz</i> matrix is defined by just one row. toepl i tz generates Toeplitz matrices given just the row or row and column description.			
	T = toeplitz(c, r) returns a nonsymmetric Toeplitz matrix T having c as its first column and r as its first row. If the first elements of c and r are different, a message is printed and the column element is used.			
	T = toeplitz(r) returns the symmetric or Hermitian Toeplitz matrix formed from vector r, where r defines the first row of the matrix.			
Examples	A Toeplitz matrix with diagonal disagreement is			
	$c = [1 \ 2 \ 3 \ 4 \ 5];$ $r = [1.5 \ 2.5 \ 3.5 \ 4.5 \ 5.5];$ toeplitz(c,r) Column wins diagonal conflict: ans =			
	1. 000 2. 500 3. 500 4. 500 5. 500			
	2.000 1.000 2.500 3.500 4.500			
	3. 000 2. 000 1. 000 2. 500 3. 500			
	4.000 3.000 2.000 1.000 2.500			
	5.000 4.000 3.000 2.000 1.000			
See Also	hankel			

trace

Purpose	Sum of diagonal elements
Syntax	b = trace(A)
Description	b = trace(A) is the sum of the diagonal elements of the matrix A.
Algorithm	<pre>trace is a single-statement M-file. t = sum(di ag(A));</pre>
See Also	det, ei g

Purpose	Trapezoidal numerical integration	
Syntax	Z = trapz(Y) Z = trapz(X, Y) Z = trapz(, dim)	
Description	Z = trapz(Y) computes an approximation of the integral of Y via the trapezoidal method (with unit spacing). To compute the integral for spacing other than one, multiply Z by the spacing increment.	
	If Y is a vector, $trapz(Y)$ is the integral of Y.	
	If Y is a matrix, $trapz(Y)$ is a row vector with the integral over each column.	
	If Y is a multidimensional array, ${\tt trapz}({\tt Y})$ works across the first nonsingleton dimension.	
	Z = trapz(X, Y) computes the integral of Y with respect to X using trapezoidal integration.	
	If X is a column vector and Y an array whose first nonsingleton dimension is $l \operatorname{ength}(X)$, $\operatorname{trapz}(X, Y)$ operates across this dimension.	
	Z = trapz(, dim) integrates across the dimension of Y specified by scalar dim. The length of X, if given, must be the same as $si ze(Y, dim)$.	
Examples	The exact value of $\int_0^{\pi} \sin(x) dx$ is 2.	
	To approximate this numerically on a uniformly spaced grid, use	
	X = 0: pi / 100: pi; Y = sin(x);	
	Then both	
	Z = trapz(X, Y)	
	and	
	Z = pi / 100*trapz(Y)	
	produce	

Z = 1.9998

A nonuniformly spaced example is generated by

X = sort(rand(1, 101)*pi); Y = sin(X); Z = trapz(X, Y);

The result is not as accurate as the uniformly spaced grid. One random sample produced

Z =

1.9984

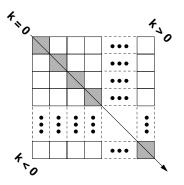
See Also

cumsum, cumtrapz

Purpose	Lay out tree or forest
Syntax	<pre>[x, y] = treelayout(parent, post) [x, y, h, s] = treelayout(parent, post)</pre>
Description	[x, y] = treel ayout (parent, post) lays out a tree or a forest. parent is the vector of parent pointers, with 0 for a root. post is an optional postorder permutation on the tree nodes. If you omit post, treel ayout computes it. x and y are vectors of coordinates in the unit square at which to lay out the nodes of the tree to make a nice picture.
	[x, y, h, s] = treel ayout(parent, post) also returns the height of the tree h and the number of vertices s in the top-level separator.
See Also	etree, treeplot, etreeplot, symbfact

treeplot

Purpose	Plot picture of tree
Syntax	treepl ot(p) treepl ot(p, nodeSpec, edgeSpec)
Description	treepl ot (p) plots a picture of a tree given a vector of parent pointers, with $p(i) = 0$ for a root.
	treepl ot (p, nodeSpec, edgeSpec) allows optional parameters nodeSpec and edgeSpec to set the node or edge color, marker, and linestyle. Use '' to omit one or both.
See Also	etree, etreepl ot, treel ayout


Purpose	Lower triangular part of a matrix
---------	-----------------------------------

Syntax

L = tril(X)L = tril(X, k)

Description L = tril(X) returns the lower triangular part of X.

L = tril(X, k) returns the elements on and below the kth diagonal of X. k = 0 is the main diagonal, k > 0 is above the main diagonal, and k < 0 is below the main diagonal.

0

0

0

0

Examples tril(ones(4, 4), -1) ans = 0 0 0 1 0 0 1 1 0 1 1 1

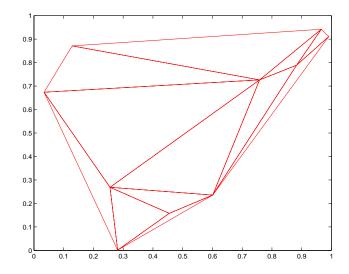
See Also

diag, triu

trimesh

Purpose	Triangular mesh plot
Syntax	<pre>trimesh(Tri, X, Y, Z) trimesh(Tri, X, Y, Z, C) trimesh(' PropertyName', PropertyValue) h = trimesh()</pre>
Description	tri mesh(Tri , X, Y, Z) displays triangles defined in the <i>m</i> -by-3 face matrix Tri as a mesh. Each row of Tri defines a single triangular face by indexing into the vectors or matrices that contain the X, Y, and Z vertices.
	trimesh(Tri, X, Y, Z, C) specifies color defined by C in the same manner as the surf function. MATLAB performs a linear transformation on this data to obtain colors from the current colormap.
	trimesh(' <i>PropertyName</i> ', PropertyValue) specifies additional patch property names and values for the patch graphics object created by the function.
	h = trimesh() returns a handle to a patch graphics object.
Example	<pre>Create vertex vectors and a face matrix, then create a triangular mesh plot. x = rand(1, 50); y = rand(1, 50); z = peaks(6*x-3, 6*x-3); tri = del aunay(x, y); tri mesh(tri, x, y, z)</pre>
See Also	patch, tetramesh, tri pl ot, tri surf, del aunay "Creating Surfaces and Meshes" for related functions
	0

Purpose	Numerically evaluate triple integral			
Syntax	<pre>tri pl equad(fun, xmi n, xmax, ymi n, ymax, zmi n, zmax) tri pl equad(fun, xmi n, xmax, ymi n, ymax, zmi n, zmax, tol) tri pl equad(fun, xmi n, xmax, ymi n, ymax, zmi n, zmax, tol, method) tri pl equad(fun, xmi n, xmax, ymi n, ymax, zmi n, zmax, tol, method, p1, p2,)</pre>			
Description	tri pl equad(fun, xmi n, xmax, ymi n, ymax, zmi n, zmax) evaluates the triple integral fun(x, y, z) over the three dimensional rectangular region xmi n <= x <= xmax, ymi n <= y <= ymax, zmi n <= z <= zmax. The function fun(x, y, z) must accept a vector x and scalars y and z, and return a vector of values of the integrand.			
	triplequad(fun, xmin, xmax, ymin, ymax, zmin, zmax, tol) uses a tolerance tol instead of the default, which is 1.0e-6.			
	tri pl equad(fun, xmi n, xmax, ymi n, ymax, zmi n, zmax, tol, method) uses the quadrature function specified as method, instead of the default quad. Valid values for method are @quadl or the function handle of a user-defined quadrature method that has the same calling sequence as quad and quadl.			
	tri pl equad(fun, xmi n, xmax, ymi n, ymax, zmi n, zmax, tol, method, p1, p2,) passes the additional parameters p1, p2, to $fun(x, y, p1, p2,)$. Use [] as a placeholder if you do not specify tol or method. tri pl equad(fun, xmi n, xmax, ymi n, ymax, zmi n, zmax, [], [], p1, p2,) is the same as			
	triplequad(fun, xmin, xmax, ymin, ymax, zmin, zmax, 1e-6, @quad, p1, p2,)			
Examples	fun can be an inline object			
	Q = triplequad(inline(' $y*sin(x)+z*cos(x)$ '), 0, pi, 0, 1, -1, 1)			
	or a function handle			
	Q = triplequad(@integrnd, 0, pi, 0, 1, -1, 1)			
	where integrnd. m is the M-file			
	function $f = integrnd(x, y, z)$ $f = y^* sin(x) + z^* cos(x);$			


triplequad

This example integrates y*sin(x)+z*cos(x) over the region $0 \le x \le pi$, $0 \le y \le 1, -1 \le z \le 1$. Note that the integrand can be evaluated with a vector x and scalars y and z.

See Also dbl quad, i nl i ne, quad, quadl, @ (function handle)

Purpose	2-D triangular plot		
Syntax	<pre>tri pl ot (TRI, x, y) tri pl ot (TRI, x, y, col or) h = tri pl ot() tri pl ot(, ' param', ' val ue', ' param', ' val ue')</pre>		
Description	tri pl ot (TRI, x, y) displays the triangles defined in the m-by-3 matrix TRI. A row of TRI contains indices into the vectors x and y that define a single triangle. The default line color is blue.		
	tri pl ot (TRI , x, y, col or) uses the string col or as the line color. col or can also be a line specification. See Col orSpec for a list of valid color strings. See Li neSpec for information about line specifications.		
	h = triplot() returns a vector of handles to the displayed triangles.		
	tri pl ot $(\ldots, 'param', 'val ue', 'param', 'val ue'\ldots)$ allows additional line property name/property value pairs to be used when creating the plot. See Li ne Properti es for information about the available properties.		
Examples	This code plots the Delaunay triangulation for 10 randomly generated points. rand('state', 7); x = rand(1, 10); y = rand(1, 10); TRI = del aunay(x, y); triplot(TRI, x, y, 'red')		

triplot

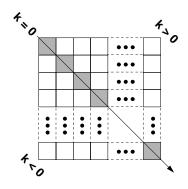
See Also ColorSpec, del aunay, line, Line Properties, LineSpec, plot, trimesh, trisurf

trisurf

Purpose	Triangular surface plot
Syntax	<pre>trisurf(Tri, X, Y, Z) trisurf(Tri, X, Y, Z, C) trisurf(' PropertyName', PropertyValue) h = trisurf()</pre>
Description	tri surf (Tri , X, Y, Z) displays triangles defined in the <i>m</i> -by-3 face matrix Tri as a surface. Each row of Tri defines a single triangular face by indexing into the vectors or matrices that contain the X, Y, and Z vertices.
	tri surf (Tri , X, Y, Z, C) specifies color defined by C in the same manner as the surf function. MATLAB performs a linear transformation on this data to obtain colors from the current colormap.
	tri surf(' $PropertyName'$, PropertyValue) specifies additional patch property names and values for the patch graphics object created by the function.
	h = trisurf() returns a patch handle.
Example	Create vertex vectors and a face matrix, then create a triangular surface plot.
	<pre>x = rand(1, 50); y = rand(1, 50); z = peaks(6*x-3, 6*x-3); tri = del aunay(x, y); tri surf(tri, x, y, z)</pre>
See Also	patch, surf, tetramesh, tri mesh, tri pl ot, del aunay
	"Creating Surfaces and Meshes" for related functions

triu

Purpose	Upper triangular part of a matrix
---------	-----------------------------------


Syntax

U = triu(X)U = triu(X, k)

Description

U = triu(X) returns the upper triangular part of X.

 $U=tri\,u(X,\,k)\,$ returns the element on and above the kth diagonal of X. k=0 is the main diagonal, $k\,>\,0$ is above the main diagonal, and $k\,<\,0$ is below the main diagonal.

Examples	triu(ones(4,4),-1)			
	ans =			
	1	1	1	
	1	1	1	
	0	1	1	
	0	0	1	
See Also	diag, tril			

Purpose	True array
Syntax	<pre>true true(n) true(m, n) true(m, n, p,) true(size(A))</pre>
Description	<pre>true is shorthand for logi cal (1). true(n) is an n-by-n matrix of logical ones. true(m, n) or true([m, n]) is an m-by-n matrix of logical ones. true(m, n, p,) or true([m n p]) is an m-by-n-by-p-by array of logical ones. true(si ze(A)) is an array of logical ones that is the same size as array A.</pre>
Remarks	$\label{eq:true} true(n) \text{ is much faster and more memory efficient than } logical(ones(n)).$
See Also	fal se, l ogi cal

Purpose Begin try block Description The general form of a try statement is: try, statement, . . . , statement, catch. statement. . . . , statement, end Normally, only the statements between the try and catch are executed. However, if an error occurs while executing any of the statements, the error is captured into lasterr, and the statements between the catch and end are executed. If an error occurs within the catch statements, execution stops unless caught by another try...catch block. The error string produced by a

failed try block can be obtained with lasterr.

See Also catch, end, eval, evalin

Purpose	Search for enclosing Delaunay triangle
Syntax	T = tsearch(x, y, TRI, xi, yi)
Description	T = tsearch(x, y, TRI, xi, yi) returns an index into the rows of TRI for each point in xi, yi. The tsearch command returns NaN for all points outside the convex hull. Requires a triangulation TRI of the points x,y obtained from del aunay.
See Also	del aunay, del aunayn, dsearch, tsearchn

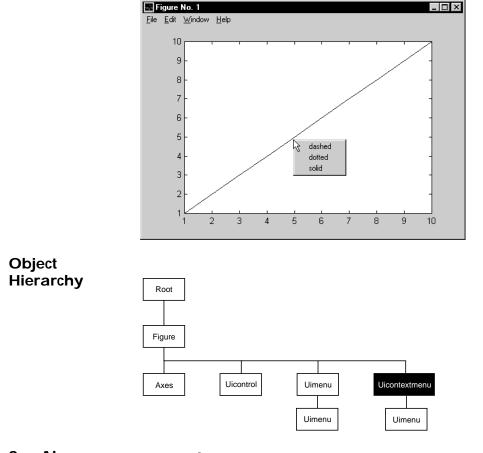
tsearchn

Purpose	n-D closest simplex search
Syntax	<pre>t = tsearchn(X, TES, XI) [t, P] = tsearchn(X, TES, XI)</pre>
Description	t = tsearchn(X, TES, XI) returns the indices t of the enclosing simplex of the Delaunay tessellation TES for each point in XI. X is an m-by-n matrix, representing m points in n-D space. XI is a p-by-n matrix, representing p points in n-D space. tsearchn returns NaN for all points outside the convex hull of X. tsearchn requires a tessellation TES of the points X obtained from del aunayn. [t, P] = tsearchn(X, TES, XI) also returns the barycentric coordinate P of XI in the simplex TES. P is a p-by-n+1 matrix. Each row of P is the Barencentric coordinate of the corresponding point in XI. It is useful for interpolation.
See Also	del aunayn, gri ddatan, tsearch

Purpose	List file
Syntax	type ('filename') type filename
Description	type('filename') displays the contents of the specified file in the MATLAB Command Window. Use the full path for filename, or use a MATLAB relative partial pathname.
	If you do not specify a filename extension and there is no filename file without an extension, the type function adds the . m extension by default. The type function checks the directories specified in the MATLAB search path, which makes it convenient for listing the contents of M-files on the screen. Use type with more on to see the listing one screenful at a time.
	type filename is the unquoted form of the syntax.
Examples	type('foo.bar') lists the contents of the file foo.bar.
	type foo lists the contents of the file foo. If foo does not exist, type foo lists the contents of the file foo. m.
See Also	cd, dbtype, del ete, dir, more, parti al path, path, what, who

uicontextmenu

Purpose	Create a context menu
Syntax	<pre>handle = uicontextmenu('PropertyName', PropertyValue,);</pre>
Description	ui contextmenu creates a context menu, which is a menu that appears when the user right-clicks on a graphics object.
	You create context menu items using the ui menu function. Menu items appear in the order the ui menu statements appear. You associate a context menu with an object using the UI ContextMenu property for the object and specifying the context menu's handle as the property value.
Properties	This table lists the properties that are useful to ui contextmenu objects, grouping them by function. Each property name acts as a link to a description of the property.


Property Name	Property Description	Property Value	
Controlling Style and Appearance			
Vi si bl e	Uicontextmenu visibility	Value: on, off Default: off	
Position	Location of uicontextmenu when Vi si bl e is set to on	Value: two-element vector Default: [0 0]	
General Information	About the Object		
Chi l dren	The uimenus defined for the uicontextmenu	Value: matrix	
Parent	Uicontextmenu object's parent	Value: scalar figure handle	
Tag	User-specified object identifier	Value: string	
Туре	Class of graphics object	Value: string (read-only) Default: ui control	
UserData	User-specified data	Value: matrix	
Controlling Callback F	Routine Execution		

Property Name	Property Description Property Value	
BusyActi on	Callback routine interruption	Value: cancel , queue Default: queue
Callback	Control action	Value: string
CreateFcn	Callback routine executed during object creation	Value: string
DeleteFcn	Callback routine executed during object deletion	Value: string
Interrupti bl e	Callback routine interruption mode	Value: on, off Default: on

Handl eVi si bility	Whether handle is accessible from	Value: on, callback, off
	command line and GUIs	Default: on

Example These statements define a context menu associated with a line. When the user extend-clicks anywhere on the line, the menu appears. Menu items enable the user to change the line style.

% Define the context menu cmenu = uicontextmenu; % Define the line and associate it with the context menu hline = plot(1:10, 'UIContextMenu', cmenu); % Define callbacks for context menu items cb1 = ['set(hline, ''LineStyle'', ''--'')']; cb2 = ['set(hline, ''LineStyle'', ''-'')']; cb3 = ['set(hline, ''LineStyle'', ''-'')']; % Define the context menu items item1 = uimenu(cmenu, 'Label', 'dashed', 'Callback', cb1); item2 = uimenu(cmenu, 'Label', 'solid', 'Callback', cb3);

When the user extend-clicks on the line, the context menu appears, as shown in this figure:

ui control, ui menu

Modifying	You can set and quer	y graphics object properties in two ways:	
Properties	• The Property Editor is an interactive tool that enables you to see and change object property values.		
	• The set and get co properties	ommands enable you to set and query the values of	
	To change the defaul	t value of properties see Setting Default Property Values.	
Uicontextmenu	BusyAction	cancel {queue}	
Property Descriptions	 <i>Callback routine interruption.</i> The BusyActi on property enables you to control how MATLAB handles events that potentially interrupt executing callback routines. If a callback routine is executing, subsequently invoked callback routines always attempt to interrupt it. If the Interrupti bl e property of the object whose callback is executing is set to on (the default), then interruption occurs at the next point where the event queue is processed. If the Interrupti bl e property is off, the BusyActi on property of the object whose callback is executing determines how MATLAB handles the event. The choices are: cancel – discard the event that attempted to execute a second callback routine. queue – queue the event that attempted to execute a second callback routine until the current callback finishes. 		
	ButtonDownFcn	string	
	This property has no	effect on uicontextmenu objects.	
	Callback	string	
	for which a context m the context menu is p	tine that executes whenever you right-click on an object nenu is defined. The routine executes immediately before posted. Define this routine as a string that is a valid or the name of an M-file. The expression executes in the	
	Chi l dren	matrix	
	The uimenus defined	for the uicontextmenu.	

Clipping {on} | off

This property has no effect on uicontextmenu objects.

CreateFcn string

Callback routine executed during object creation. This property defines a callback routine that executes when MATLAB creates a uicontextmenu object. You must define this property as a default value for uicontextmenus. For example, this statement:

```
set(0, 'DefaultUicontextmenuCreateFcn',...
'set(gcf,''IntegerHandle'',''off'')')
```

defines a default value on the root level that sets the figure IntegerHandl e property to off whenever you create a uicontextmenu object. MATLAB executes this routine after setting all property values for the uicontextmenu. Setting this property on an existing uicontextmenu object has no effect.

The handle of the object whose CreateFcn is being executed is accessible only through the root CallbackObject property, which can be queried using gcbo.

DeleteFcn string

Delete uicontextmenu callback routine. A callback routine that executes when you delete the uicontextmenu object (e.g., when you issue a delete command or clear the figure containing the uicontextmenu). MATLAB executes the routine before destroying the object's properties so these values are available to the callback routine.

The handle of the object whose DeleteFcn is being executed is accessible only through the root CallbackObject property, which you can query using gcbo.

```
HandleVisibility {on} | callback | off
```

Control access to object's handle by command-line users and GUIs. This property determines when an object's handle is visible in its parent's list of children. Handl eVi si bility is useful for preventing command-line users from accidentally drawing into or deleting a figure that contains only user interface devices (such as a dialog box).

Handles are always visible when Handl eVi si bility is on.

Setting Handl eVi si bility to call back causes handles to be visible from within callback routines or functions invoked by callback routines, but not from

within functions invoked from the command line. This provides a means to protect GUIs from command-line users, while allowing callback routines to have complete access to object handles.

Setting Handl eVi si bility to off makes handles invisible at all times. This may be necessary when a callback routine invokes a function that might potentially damage the GUI (such as evaluating a user-typed string), and so temporarily hides its own handles during the execution of that function.

When a handle is not visible in its parent's list of children, it cannot be returned by functions that obtain handles by searching the object hierarchy or querying handle properties. This includes get, findobj, gca, gcf, gco, newplot, cl a, cl f, and cl ose.

When a handle's visibility is restricted using call back or off, the object's handle does not appear in its parent's Children property, figures do not appear in the root's CurrentFigure property, objects do not appear in the root's CallbackObj ect property or in the figure's CurrentObj ect property, and axes do not appear in their parent's CurrentAxes property.

You can set the root ShowHi ddenHandl es property to on to make all handles visible, regardless of their Handl eVi si bility settings (this does not affect the values of the Handl eVi si bility properties).

Handles that are hidden are still valid. If you know an object's handle, you can set and get its properties, and pass it to any function that operates on handles.

HitTest {on} | off

This property has no effect on uicontextmenu objects.

Interruptible {on} | off

Callback routine interruption mode. The Interruptible property controls whether a uicontextmenu callback routine can be interrupted by subsequently invoked callback routines. By default (on), execution of a callback routine can be interrupted.

Only callback routines defined for the ButtonDownFcn and Callback properties are affected by the Interruptible property. MATLAB checks for events that can interrupt a callback routine only when it encounters a drawnow, figure, getframe, pause, or waitfor command in the routine.

Parent handle

Uicontextmenu's parent. The handle of the uicontextmenu's parent object. The parent of a uicontextmenu object is the figure in which it appears. You can move a uicontextmenu object to another figure by setting this property to the handle of the new parent.

Position vector

Uicontextmenu's position. A two-element vector that defines the location of a context menu posted by setting the Vi si bl e property value to on. Specify Position as

[left bottom]

where vector elements represent the distance in pixels from the bottom left corner of the figure window to the top left corner of the context menu.

Selected on | {off}

This property has no effect on uicontextmenu objects.

```
SelectionHighlight {on} | off
```

This property has no effect on uicontextmenu objects.

Tag string

User-specified object label. The Tag property provides a means to identify graphics objects with a user-specified label. This is particularly useful when constructing interactive graphics programs that would otherwise need to define object handles as global variables or pass them as arguments between callback routines. You can define Tag as any string.

Type string

Class of graphics object. For uicontextmenu objects, Type is always the string 'ui contextmenu'.

UIContextMenu handle

This property has no effect on uicontextmenus.

UserData matrix

User-specified data. Any data you want to associate with the uicontextmenu object. MATLAB does not use this data, but you can access it using set and get.

Visible on | {off}

Uicontextmenu visibility. The Vi si bl e property can be used in two ways:

- Its value indicates whether the context menu is currently posted. While the context menu is posted, the property value is on; when the context menu is not posted, its value is off.
- Its value can be set to on to force the posting of the context menu. Similarly, setting the value to off forces the context menu to be removed. When used in this way, the Positi on property determines the location of the posted context menu.

uicontrol

Purpose	Create user interface control object
Syntax	<pre>handl e = ui control (parent) handl e = ui control (, ' PropertyName', PropertyValue,)</pre>
Description	ui control creates uicontrol graphics objects (user interface controls). You implement graphical user interfaces using uicontrols. When selected, most uicontrol objects perform a predefined action. MATLAB supports numerous styles of uicontrols, each suited for a different purpose:
	Check boxes
	Editable text fields
	• Frames
	List boxes
	Pop-up menus
	Push buttons
	Radio buttons
	Sliders
	Static text labels
	Toggle buttons
	See User Interface Controls for information on using these uicontrols within GUIDE, the MATLAB GUI development environment.
	Specifying the Uicontrol Style
	To create a specific type of uicontrol, set the $Styl e$ property as one of the following strings:
	• 'checkbox' – Check boxes generate an action when clicked on. These devices are useful when providing the user with a number of independent choices. To activate a check box, click the mouse button on the object. The state of the device is indicated on the display.
	• 'edit' – Editable text fields enable users to enter or modify text values. Use editable text when you want text as input.
	On Microsoft Windows systems, if an editable text box has focus, clicking on

On Microsoft Windows systems, if an editable text box has focus, clicking on the menu bar does not cause the editable text callback routine to execute. However, it does cause execution on UNIX systems. Therefore, after clicking on the menu bar, the statement

get(edit_handle, 'String')

does not return the current contents of the edit box on Microsoft Windows systems because MATLAB must execute the callback routine to update the String property (even though the text string has changed on the screen). This behavior is consistent with the respective platform conventions.

• 'frame' – Frames are rectangles that provide a visual enclosure for regions of a figure window. Frames can make a user interface easier to understand by grouping related controls. Frames have no callback routines associated with them. Only other uicontrols can appear within frames.

Frames are opaque, not transparent, so the order you define uicontrols is important in determining whether uicontrols within a frame are covered by the frame or are visible. *Stacking order* determines the order objects are drawn: objects defined first are drawn first; objects defined later are drawn over existing objects. If you use a frame to enclose objects, you must define the frame before you define the objects.

• 'listbox' – List boxes display a list of items (defined using the String property) and enable users to select one or more items. The Min and Max properties control the selection mode:

If Max-Min>1, then multiple selection is allowed.

If Max-Mi n<=1, then only single selection is allowed.

The Val ue property indicates selected entries and contains the indices into the list of strings; a vector value indicates multiple selections. MATLAB evaluates the list box's callback routine after any mouse button up event that changes the Val ue property. Therefore, you may need to add a "Done" button to delay action caused by multiple clicks on list items. List boxes differentiate between single and double clicks and set the figure Sel ect i onType property to normal or open accordingly before evaluating the list box's Callback property.

• ' popupmenu' – Popup menus open to display a list of choices (defined using the String property) when pressed. When not open, a pop-up menu indicates the current choice. Pop-up menus are useful when you want to provide users with a number of mutually exclusive choices, but do not want to take up the

amount of space that a series of radio buttons requires. You must specify a value for the String property.

- 'pushbutton' Push buttons generate an action when pressed. To activate a push button, click the mouse button on the push button.
- 'radi obutton' Radio buttons are similar to check boxes, but are intended to be mutually exclusive within a group of related radio buttons (i.e., only one is in a pressed state at any given time). To activate a radio button, click the mouse button on the object. The state of the device is indicated on the display. Note that your code can implement the mutually exclusive behavior of radio buttons.
- 'slider' Sliders accept numeric input within a specific range by enabling the user to move a sliding bar. Users move the bar by pressing the mouse button and dragging the pointer over the bar, or by clicking in the trough or on an arrow. The location of the bar indicates a numeric value, which is selected by releasing the mouse button. You can set the minimum, maximum, and current values of the slider.
- 'text' Static text boxes display lines of text. Static text is typically used to label other controls, provide directions to the user, or indicate values associated with a slider. Users cannot change static text interactively and there is no way to invoke the callback routine associated with it.
- 'toggle' Toggle buttons are controls that execute callbacks when clicked on and indicate their state, either on or off. Toggle buttons are useful for building toolbars.
- **Remarks** The ui control function accepts property name/property value pairs, structures, and cell arrays as input arguments and optionally returns the handle of the created object. You can also set and query property values after creating the object using the set and get functions.

Uicontrol objects are children of figures and therefore do not require an axes to exist when placed in a figure window.

Properties This table lists all properties useful for ui control objects, grouping them by function. Each property name acts as a link to a description of the property.

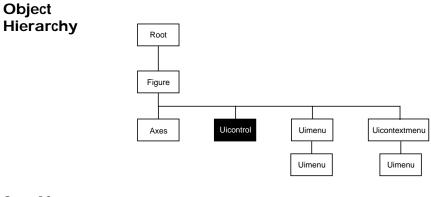
Property Name	Property Description	Property Value
Controlling Style and Appearance		
BackgroundCol or	Object background color	Value: Col orSpec Default: system dependent
CData	Truecolor image displayed on the control	Value: matrix
ForegroundCol or	Color of text	Value: Col orSpec Default: [0 0 0]
Sel ect i onHi ghl i ght	Object highlighted when selected	Value: on, of f Default: on
String	Uicontrol label, also list box and pop-up menu items	Value: string
Vi si bl e	Uicontrol visibility	Value: on, off Default: on

General Information About the Object

Chi l dren	Uicontrol objects have no children	
Enabl e	Enable or disable the uicontrol	Value: on, i nacti ve, off Default: on
Parent	Uicontrol object's parent	Value: scalar figure handle
Selected	Whether object is selected	Value: on, off Default: off
SliderStep	Slider step size	Value: two-element vector Default: [0. 01 0. 1]

uicontrol

Property Name	Property Description	Property Value
Styl e	Type of uicontrol object	Value: pushbutton, toggl ebutton, radi obutton, checkbox, edit, text, slider, frame, listbox, popupmenu Default: pushbutton
Tag	User-specified object identifier	Value: string
Tool ti pStri ng	Content of object's tooltip	Value: string
Туре	Class of graphics object	Value: string (read-only) Default: ui control
UserData	User-specified data	Value: matrix
Controlling the Object	Position	
Position	Size and location of uicontrol object	Value: position rectangle Default: [20 20 60 20]
Units	Units to interpret position vector	Value: pi xel s, normal i zed, i nches, centi meters, poi nts, characters Default: pi xel s
Controlling Fonts and	Labels	
FontAngl e	Character slant	Value: normal, italic, oblique Default: normal
FontName	Font family	Value: string Default: system dependent
FontSi ze	Font size	Value: size in FontUnits Default: system dependent


Property Name	Property Description	Property Value
FontUnits	Font size units	Value: points, normalized, inches, centimeters, pixels Default: points
FontWei ght	Weight of text characters	Value: light, normal, demi, bold Default: normal
Horizontal Al i gnment	Alignment of label string	Value: l eft, center, right Default: depends on uicontrol object
String	Uicontrol object label, also list box and pop-up menu items	Value: string
Controlling Callback Rou	tine Execution	
BusyAction	Callback routine interruption	Value: cancel , queue Default: queue
ButtonDownFcn	Button press callback routine	Value: string
Callback	Control action	Value: string
CreateFcn	Callback routine executed during object creation	Value: string
DeleteFcn	Callback routine executed during object deletion	Value: string
Interrupti bl e	Callback routine interruption mode	Value: on, off Default: on
UI Cont ext Menu	Uicontextmenu object associated with the uicontrol	Value: handle
Information About the Cu	urrent State	
Li stboxTop	Index of top-most string displayed in list box	Value: scalar Default: [1]

uicontrol

Property Name	Property Description	Property Value	
Max	Maximum value (depends on uicontrol object)	Value: scalar Default: object dependent	
Mi n	Minimum value (depends on uicontrol object)	Value: scalar Default: object dependent	
Val ue	Current value of uicontrol object	Value: scalar or vector Default: object dependent	
Controlling Access	to Objects		
Handl eVi si bi lity	Whether handle is accessible from command line and GUIs	Value: on, callback, off Default: on	
HitTest	Whether selectable by mouse click	Value: on, off Default: on	
Examples	The following statement creates a push buttor when pressed: h = ui control ('Style', 'pushbutton', 'Position', [20 150 100 70], 'Ca You can create a uicontrol object that changes pop-up menu and supplying an M-file name a	'String', 'Clear', llback', 'cla'); s figure colormaps by specifying	
	<pre>hpop = uicontrol('Style', 'popup', 'String', 'hsv hot cool gray' 'Position', [20 320 100 50],. 'Callback', 'setmap');</pre>	· ,	
	The above call to ui control defines four individual choices in the menu: hsv hot, cool, and gray. You specify these choices with the String property, separating the choices with the " " character.		
	The Callback, in this case setmap, is the name of an M-file that defines a mor complicated set of instructions than a single MATLAB command. setmap contains these statements:		
	<pre>val = get(hpop, 'Value'); if val == 1</pre>		

```
colormap(hsv)
elseif val == 2
    colormap(hot)
elseif val == 3
    colormap(cool)
elseif val == 4
    colormap(gray)
end
```

The Value property contains a number that indicates the selected choice. The choices are numbered sequentially from one to four. The setmap M-file can get and then test the contents of the Value property to determine what action to take.

See Also

textwrap, ui menu

Uicontrol Properties

Modifying You can s Properties • The Pro

You can set and query graphics object properties in two ways:

- The Property Editor is an interactive tool that enables you to see and change object property values.
- The set and get commands enable you to set and query the values of properties

To change the default value of properties see Setting Default Property Values.

Uicontrol You can set default uicontrol properties on the root and figure levels:

Property Descriptions

set(0, 'DefaultUi control Property', PropertyValue...)
set(gcf, 'DefaultUi control Property', PropertyValue...)

where Property is the name of the uicontrol property whose default value you want to set and PropertyVal ue is the value you are specifying. Use set and get to access uicontrol properties.

Curly braces { } enclose the default value.

BackgroundColor ColorSpec

Object background color. The color used to fill the uicontrol rectangle. Specify a color using a three-element RGB vector or one of the MATLAB predefined names. The default color is determined by system settings. See Col orSpec for more information on specifying color.

BusyAction cancel | {queue}

Callback routine interruption. If a callback is executing and the user triggers an event (such as a mouse click) on an object for which a callback is defined, that callback attempts to interrupt the first callback. The first callback can be interrupted only at a drawnow, figure, getframe, pause, or waitfor command; if the callback does not contain any of these commands, it cannot be interrupted.

If the Interrupti bl e property of the object whose callback is executing is off (the default value is on), the callback cannot be interrupted (except by certain callbacks; see the note below). The BusyActi on property of the object whose callback is waiting to execute determines what happens to the callback:

• If the value is queue, the callback is added to the event queue and executes after the first callback finishes execution.

• If the value is cancel, the event is discarded and the callback is not executed.

Note If the interrupting callback is a Del eteFcn or CreateFcn callback or a figure's Cl oseRequest or ResizeFcn callback, it interrupts an executing callback regardless of the value of that object's Interruptible property. The interrupting callback starts execution at the next drawnow, figure, getframe, pause, or waitfor statement.

ButtonDownFcn string

Button press callback routine. A callback routine that executes whenever you press a mouse button while the pointer is in a five-pixel wide border around the uicontrol. When the uicontrol's Enabl e property is set to i nactive or off, the ButtonDownFcn executes when you click the mouse in the five-pixel border or on the control itself. This is useful for implementing actions to interactively modify control object properties, such as size and position, when they are clicked on (using sel ectmoveresi ze, for example).

Define this routine as a string that is a valid MATLAB expression or the name of an M-file. The expression executes in the MATLAB workspace.

The Callback property defines the callback routine that executes when you activate the enabled uicontrol (e.g., click on a push button).

Callback string (GUIDE sets this property)

Control action. A routine that executes whenever you activate the uicontrol object (e.g., when you click on a push button or move a slider). Define this routine as a string that is a valid MATLAB expression or the name of an M-file. The expression executes in the MATLAB workspace.

To execute the callback routine for an editable text control, type in the desired text, then either:

- Move the focus off the object (click the mouse someplace else in the GUI),
- For a single line editable text box, press Return, or
- For a multiline editable text box, press Ctl-Return.

Callback routines defined for frames and static text do not execute because no action is associated with these objects.

Uicontrol Properties

CData matrix

Truecolor image displayed on control. A three-dimensional matrix of RGB values that defines a truecolor image displayed on either a push button or toggle button. Each value must be between 0.0 and 1.0.

Children matrix

The empty matrix; uicontrol objects have no children.

Clipping {on} | off

This property has no effect on uicontrols.

CreateFcn string

Callback routine executed during object creation. This property defines a callback routine that executes when MATLAB creates a uicontrol object. You must define this property as a default value for uicontrols. For example, this statement:

defines a default value on the root level that sets the figure IntegerHandl e property to off whenever you create a uicontrol object. MATLAB executes this routine after setting all property values for the uicontrol. Setting this property on an existing uicontrol object has no effect.

The handle of the object whose CreateFcn is being executed is accessible only through the root CallbackObject property, which can be queried using gcbo.

DeleteFcn string

Delete uicontrol callback routine. A callback routine that executes when you delete the uicontrol object (e.g., when you issue a delete command or clear the figure containing the uicontrol). MATLAB executes the routine before destroying the object's properties so these values are available to the callback routine.

The handle of the object whose DeleteFcn is being executed is accessible only through the root CallbackObject property, which you can query using gcbo.

Enable {on} | inactive | off

Enable or disable the uicontrol. This property controls how uicontrols respond to mouse button clicks, including which callback routines execute.

- on The uicontrol is operational (the default).
- i nacti ve The uicontrol is not operational, but looks the same as when Enabl e is on.
- off The uicontrol is not operational and its label (set by the string property) is grayed out.

When you left-click on a uicontrol whose Enable property is on, MATLAB performs these actions in this order:

- **1** Sets the figure's Sel ecti onType property.
- 2 Executes the control's Callback routine.
- **3** Does not set the figure's CurrentPoint property and does not execute either the control's ButtonDownFcn or the figure's WindowButtonDownFcn callback.

When you left-click on a uicontrol whose Enable property is i nactive or off, or when you right-click on a uicontrol whose Enable property has any value, MATLAB performs these actions in this order:

- **1** Sets the figure's Sel ecti onType property.
- 2 Sets the figure's CurrentPoint property.
- **3** Executes the figure's WindowButtonDownFcn callback.
- **4** On a right-click, if the uicontrol is associated with a context menu, posts the context menu.
- 5 Executes the control's ButtonDownFcn callback.
- 6 Executes the selected context menu item's Callback routine.
- **7** Does not execute the control's Callback routine.

Setting this property to inactive or off enables you to implement object dragging or resizing using the ButtonDownFcn callback routine.

Extent position rectangle (read only)

Size of uicontrol character string. A four-element vector that defines the size and position of the character string used to label the uicontrol. It has the form:

[0, 0, width, height]

The first two elements are always zero. wi dth and height are the dimensions of the rectangle. All measurements are in units specified by the Units property.

Since the Extent property is defined in the same units as the uicontrol itself, you can use this property to determine proper sizing for the uicontrol with regard to its label. Do this by

- Defining the String property and selecting the font using the relevant properties.
- Getting the value of the Extent property.
- Defining the width and height of the Position property to be somewhat larger than the width and height of the Extent.

For multiline strings, the Extent rectangle encompasses all the lines of text. For single line strings, the Extent is returned as a single line, even if the string wraps when displayed on the control.

FontAngle {normal} | italic | oblique

Character slant. MATLAB uses this property to select a font from those available on your particular system. Setting this property to i tal i c or obl i que selects a slanted version of the font, when it is available on your system.

FontName string

Font family. The name of the font in which to display the String. To display and print properly, this must be a font that your system supports. The default font is system dependent.

To use a fixed-width font that looks good in any locale (and displays properly in Japan, where multibyte character sets are used), set FontName to the string Fi xedWi dth (this string value is case sensitive):

set(ui control_handle, 'FontName', 'Fi xedWi dth')

This parameter value eliminates the need to hard code the name of a fixed-width font, which may not display text properly on systems that do not use ASCII character encoding (such as in Japan). A properly written MATLAB application that needs to use a fixed-width font should set FontName to Fi xedWi dth and rely on the root Fi xedWi dthFontName property to be set correctly in the end user's environment.

End users can adapt a MATLAB application to different locales or personal environments by setting the root Fi xedWi dthFontName property to the appropriate value for that locale from startup. m. Setting the root

Fi xedWi dthFontName property causes an immediate update of the display to use the new font.

FontSize size in FontUnits

Font size. A number specifying the size of the font in which to display the String, in units determined by the FontUnits property. The default point size is system dependent.

```
FontUnits {points} | normalized | inches |
centimeters | pixels
```

Font size units. This property determines the units used by the FontSi ze property. Normal i zed units interpret FontSi ze as a fraction of the height of the uicontrol. When you resize the uicontrol, MATLAB modifies the screen FontSi ze accordingly. pi xel s, i nches, centi meters, and points are absolute units (1 point = 1/72 inch).

```
FontWeight light | {normal} | demi | bold
```

Weight of text characters. MATLAB uses this property to select a font from those available on your particular system. Setting this property to bold causes MATLAB to use a bold version of the font, when it is available on your system.

ForegroundColor ColorSpec

Color of text. This property determines the color of the text defined for the String property (the uicontrol label). Specify a color using a three-element RGB vector or one of MATLAB 's predefined names. The default text color is black. See Col or Spec for more information on specifying color.

```
HandleVisibility {on} | callback | off
```

Control access to object's handle by command-line users and GUIs. This property determines when an object's handle is visible in its parent's list of children. Handl eVi si bility is useful for preventing command-line users from accidentally drawing into or deleting a figure that contains only user interface devices (such as a dialog box).

Handles are always visible when HandleVisibility is on.

Setting Handl eVi si bi l i ty to cal l back causes handles to be visible from within callback routines or functions invoked by callback routines, but not from within functions invoked from the command line. This provides a means to protect GUIs from command-line users, while allowing callback routines to have complete access to object handles.

Setting Handl eVi si bility to off makes handles invisible at all times. This may be necessary when a callback routine invokes a function that might potentially damage the GUI (such as evaluating a user-typed string), and so temporarily hides its own handles during the execution of that function.

When a handle is not visible in its parent's list of children, it cannot be returned by functions that obtain handles by searching the object hierarchy or querying handle properties. This includes get, findobj, gca, gcf, gco, newplot, cl a, cl f, and cl ose.

When a handle's visibility is restricted using callback or off, the object's handle does not appear in its parent's Children property, figures do not appear in the root's CurrentFigure property, objects do not appear in the root's CallbackObj ect property or in the figure's CurrentObject property, and axes do not appear in their parent's CurrentAxes property.

You can set the root ShowHi ddenHandl es property to on to make all handles visible, regardless of their Handl eVi si bility settings (this does not affect the values of the Handl eVi si bility properties).

Handles that are hidden are still valid. If you know an object's handle, you can set and get its properties, and pass it to any function that operates on handles.

HitTest {on} | off

Selectable by mouse click. This property has no effect on uicontrol objects.

HorizontalAlignment left | {center} | right

Horizontal alignment of label string. This property determines the justification of the text defined for the String property (the uicontrol label):

- left Text is left justified with respect to the uicontrol.
- center Text is centered with respect to the uicontrol.
- right Text is right justified with respect to the uicontrol.

On Microsoft Windows systems, this property affects only ${\rm edi}\,t$ and $t\,{\rm ext}$ uicontrols.

Interruptible {on} | off

Callback routine interruption mode. If a callback is executing and the user triggers an event (such as a mouse click) on an object for which a callback is

defined, that callback attempts to interrupt the first callback. MATLAB processes the callbacks according to these factors:

- The Interrupti bl e property of the object whose callback is executing
- Whether the executing callback contains drawnow, figure, getframe, pause, or waitfor statements
- The BusyActi on property of the object whose callback is waiting to execute

If the Interrupti bl e property of the object whose callback is executing is on (the default), the callback can be interrupted. The callback interrupts execution at the next drawnow, fi gure, getframe, pause, or waitfor statement, and processes the events in the event queue, which includes the waiting callback.

If the Interrupti bl e property of the object whose callback is executing is off, the callback cannot be interrupted (except by certain callbacks; see the note below). The BusyActi on property of the object whose callback is waiting to execute determines what happens to the callback.

Note If the interrupting callback is a Del eteFcn or CreateFcn callback or a figure's Cl oseRequest or Resi zeFcn callback, it interrupts an executing callback regardless of the value of that object's Interrupti bl e property. The interrupting callback starts execution at the next drawnow, fi gure, getframe, pause, or waitfor statement. A figure's WindowButtonDownFcn callback routine, or an object's ButtonDownFcn or Callback routine are processed according to the rules described above.

ListboxTop scalar

Index of top-most string displayed in list box. This property applies only to the listbox style of uicontrol. It specifies which string appears in the top-most position in a list box that is not large enough to display all list entries. ListboxTop is an index into the array of strings defined by the String property and must have a value between 1 and the number of strings. Noninteger values are fixed to the next lowest integer.

Max

scalar

Maximum value. This property specifies the largest value allowed for the Value property. Different styles of uicontrols interpret Max differently:

- Check boxes Max is the setting of the Val ue property while the check box is selected.
- Editable text If Max Mi n > 1, then editable text boxes accept multiline input. If Max Mi n <= 1, then editable text boxes accept only single line input.
- List boxes If Max Mi n > 1, then list boxes allow multiple item selection. If $Max Mi n \le 1$, then list boxes do not allow multiple item selection.
- Radio buttons Max is the setting of the Value property when the radio button is selected.
- Sliders Max is the maximum slider value and must be greater than the Mi n property. The default is 1.
- Toggle buttons Max is the value of the Val ue property when the toggle button is selected. The default is 1.
- Frames, pop-up menus, push buttons, and static text do not use the Max property.

Min scalar

Minimum value. This property specifies the smallest value allowed for the Val ue property. Different styles of uicontrols interpret Min differently:

- Check boxes Mi n is the setting of the Val ue property while the check box is not selected.
- Editable text If Max Mi n > 1, then editable text boxes accept multiline input. If Max Mi n <= 1, then editable text boxes accept only single line input.
- List boxes If Max Mi n > 1, then list boxes allow multiple item selection. If Max Mi n <= 1, then list boxes allow only single item selection.
- Radio buttons Min is the setting of the Value property when the radio button is not selected.
- Sliders $\ensuremath{\text{Mi}}$ n is the minimum slider value and must be less than Max. The default is 0.
- Toggle buttons Mi n is the value of the Val ue property when the toggle button is not selected. The default is 0.

• Frames, pop-up menus, push buttons, and static text do not use the Min property.

Parent handle

Uicontrol's parent. The handle of the uicontrol's parent object. The parent of a uicontrol object is the figure in which it appears. You can move a uicontrol object to another figure by setting this property to the handle of the new parent.

Position position rectangle

Size and location of uicontrol. The rectangle defined by this property specifies the size and location of the control within the figure window. Specify Position as

[left bottom width height]

l eft and bottom are the distance from the lower-left corner of the figure window to the lower-left corner of the uicontrol object. wi dth and hei ght are the dimensions of the uicontrol rectangle. All measurements are in units specified by the Units property.

On Microsoft Windows systems, the height of pop-up menus is automatically determined by the size of the font. The value you specify for the height of the Positi on property has no effect.

The wi dth and height values determine the orientation of sliders. If wi dth is greater than height, then the slider is oriented horizontally, If height is greater than wi dth, then the slider is oriented vertically.

Selected on | {off}

Is object selected. When this property is on, MATLAB displays selection handles if the Sel ectionHi ghl i ght property is also on. You can, for example, define the ButtonDownFcn to set this property, allowing users to select the object with the mouse.

SelectionHighlight {on} | off

Object highlight when selected. When the Selected property is on, MATLAB indicates the selected state by drawing four edge handles and four corner handles. When SelectionHighlight is off, MATLAB does not draw the handles.

SliderStep [min_step max_step]

Slider step size. This property controls the amount the slider Val ue changes when you click the mouse on the arrow button (min_step) or on the slider trough (max_step). Specify SliderStep as a two-element vector; each value must be in the range [0, 1]. The actual step size is a function of the specified SliderStep and the total slider range (Max – Min). The default, [0.01 0.10], provides a 1 percent change for clicks on the arrow button and a 10 percent change for clicks in the trough.

For example, if you create the following slider,

uicontrol ('Style', 'slider', 'Min', 1, 'Max', 7,... 'SliderStep', [0.1 0.6])

clicking on the arrow button moves the indicator by,

0. 1*(7-1) ans = 0. 6000

and clicking in the trough moves the indicator by,

0. 6*(7-1) ans = 3. 6000

Note that if the specified step size moves the slider to a value outside the range, the indicator moves only to the Max or Mi n value.

See also the Max, Min, and Value properties.

String string

Uicontrol label, list box items, pop-up menu choices. For **check boxes, editable text, push buttons, radio buttons, static text,** and **toggle buttons**, the text displayed on the object. For list boxes and pop-up menus, the set of entries or items displayed in the object.

For uicontrol objects that display only one line of text, if the string value is specified as a cell array of strings or padded string matrix, only the first string of a cell array or of a padded string matrix is displayed; the rest are ignored. Vertical slash (' | ') characters are not interpreted as line breaks and instead show up in the text displayed in the uicontrol.

For multiple line editable text or static text controls, line breaks occur between each row of the string matrix, each cell of a cell array of strings, and after any n characters embedded in the string. Vertical slash (' | ') characters are not interpreted as line breaks, and instead show up in the text displayed in the uicontrol.

For multiple items on a list box or pop-up menu, you can specify items as a cell array of strings, a padded string matrix, or within a string vector separated by vertical slash (' | ') characters.

For editable text, this property value is set to the string entered by the user.

Setting the String Property to a Reserved Word

Setting a property value to default, remove, or factory produces the effect described in Setting Default Values. To set a property to one of these words (e.g., String property set to the word 'Default'), you must precede the word with the backslash character. For example,

h = uicontrol('Style', 'edit', 'String', '\Default');

Style

{pushbutton} | togglebutton | radiobutton | checkbox | edit | text | slider | frame | listbox | popupmenu

Style of uicontrol object to create. The Styl e property specifies the kind of uicontrol to create. See the Description section for information on each type.

Tag string (GUIDE sets this property)

User-specified object label. The Tag property provides a means to identify graphics objects with a user-specified label. This is particularly useful when constructing interactive graphics programs that would otherwise need to define object handles as global variables or pass them as arguments between callback routines. You can define Tag as any string.

Tool tipString string

Content of tooltip for object. The Tool tipString property specifies the text of the tooltip associated with the uicontrol. When the user moves the mouse pointer over the control and leaves it there, the tooltip is displayed.

Type string (read only)

Class of graphics object. For uicontrol objects, Type is always the string ' ui control ' .

UIContextMenu handle

Associate a context menu with uicontrol. Assign this property the handle of a Uicontextmenu object. MATLAB displays the context menu whenever you right-click over the uicontrol. Use the ui contextmenu function to create the context menu.

Units {pixels} | normalized | inches | centimeters | points | characters (Guide default normalized)

Units of measurement. The units MATLAB uses to interpret the Extent and Position properties. All units are measured from the lower-left corner of the figure window. Normal i zed units map the lower-left corner of the figure window to (0,0) and the upper-right corner to (1.0,1.0). pixels, inches, centimeters, and points are absolute units (1 point = 1/72 inch). Character units are characters using the default system font; the width of one character is the width of the letter x, the height of one character is the distance between the baselines of two lines of text.

If you change the value of Units, it is good practice to return it to its default value after completing your computation so as not to affect other functions that assume Units is set to the default value.

UserData matrix

User-specified data. Any data you want to associate with the uicontrol object. MATLAB does not use this data, but you can access it using set and get.

Value scalar or vector

Current value of uicontrol. The uicontrol style determines the possible values this property can have:

- Check boxes set Val ue to Max when they are on (when selected) and Min when off (not selected).
- List boxes set Val ue to a vector of indices corresponding to the selected list entries, where 1 corresponds to the first item in the list.
- Pop-up menus set Val ue to the index of the item selected, where 1 corresponds to the first item in the menu. The Examples section shows how to use the Val ue property to determine which item has been selected.
- Radio buttons set Val ue to Max when they are on (when selected) and Min when off (not selected).

- Sliders set Value to the number indicated by the slider bar.
- Toggle buttons set Val ue to Max when they are down (selected) and Mi n when up (not selected).
- Editable text, frames, push buttons, and static text do not set this property.

Set the Val ue property either interactively with the mouse or through a call to the set function. The display reflects changes made to Val ue.

Visible {on} | off

Uicontrol visibility. By default, all uicontrols are visible. When set to off, the uicontrol is not visible, but still exists and you can query and set its properties.

uigetdir

Purpose	Standard dialog box for selecting a directory
Syntax	<pre>directory_name = uigetdir directory_name = uigetdir('start_path') directory_name = uigetdir('start_path','dialog_title')</pre>
Description	ui getdi r displays a dialog box enabling the user to browser through the directory structure and select a directory.
	di rectory_name $=$ ui get di r opens a dialog box in the current directory displaying the default title.
	directory_name = uigetdir('start_path') opens a dialog box in the directory specified by start_path.
	directory_name = uigetdir('start_path', 'dialog_title') opens a dialog box with the specified title.
Remarks	Returned directory_name di rectory_name is a string containing the path to the directory selected in the dialog box. If the user presses the Cancel button or if any error occurs, di rectory_name is returned as the number 0.
	Specifying start_path start_path specifies the directory to display when the dialog is first opened. If start_path is a string representing a valid directory path, the dialog box opens in the specified directory. Note that on Windows 2000 operating systems, the dialog box opens with the specified directory highlighted, but not open.
	If start_path is an empty string (' '), the dialog box opens in the current working directory.
	If start_path is not a valid directory path, the dialog box opens in the base directory:
	 On Windows systems, the base directory is the Windows Desktop directory. On UNIX systems, the base directory is the directory from which MATLAB is started.

Specifying dialog_title

The placement of the di al og_{title} in the dialog box depends on the computer system:

- On Windows systems, the string replaces the default caption inside the dialog box for specifying instructions to the user.
- On UNIX systems, the string replaces the default title of the dialog box

If you do not specify the dialog_title argument, MATLAB uses the default string: Select Directory to Open.

Adding and Moving Directories

On Windows systems, users can click the **New Folder** button to add a new directory to the directory structure displayed. Users can also drag and drop existing directories.

Examples This statement displays the directories on the Z drive (which in this example contains the MATLAB documentation CD).

dname = uigetdir('Z: \');

If the user selects the techdoc directory, as show in the following picture,

Select Directory to Open	
🖻 🌌 MathWorks_R12p1D (Z:)	-
🕀 🛄 base	
mapfiles	
🕀 🛄 pdf_doc	
support.	
🕀 🔄 techdoc	
🗄 🧰 toolbox	-
│	-
OK Cancel	New Folder

uigetdir

dname contains the string

 $Z: \ \ \ p\ \ \ techdoc$

Windows

This statement uses the matl abroot command to displays the MATLAB root directory in the dialog box:

uigetdir(matlabroot, 'MATLAB Root Directory')

Suppose the user selects the demos/src directory, as shown in the following pictures:

Browse For Folder	?× _	MATLAB Root Directory	
MATLAB Root Directory	Select	Selected Directory	
	/deve	rel/R12p1/perfect/demos/src/{]	
⊡	Direct	otories Files	
Images Images <td< td=""><td>▼</td><td>* *</td></td<>	▼	* *	
		Filter Cancel	

On Windows computers, ui get di r returns a string like:

 $J: \demos\src$

Assuming MATLAB is installed on drive J: $\$

On UNIX computers, ui get di r returns a string like:

/devel/R12p1/perfect/demos/src

UNIX

Assuming MATLAB is installed in /devel /R12p1/perfect/.

See Also uigetfile, uiputfile

uigetfile

Purpose	Interactively retrieve a filename
Syntax	<pre>uigetfile uigetfile('FilterSpec') uigetfile('FilterSpec', 'DialogTitle') uigetfile('FilterSpec', 'DialogTitle', x, y) [FileName, PathName] = uigetfile() [FileName, PathName, FilterIndex] = uigetfile()</pre>
Description	ui getfile displays a dialog box used to retrieve a file. The dialog box lists the files and directories in the current directory.
	ui getfile('FilterSpec') displays a dialog box that lists files in the current directory. FilterSpec determines the initial display of files and can be a full filename or include the * wildcard. For example, '*. m' lists all the MATLAB M-files. If FilterSpec is a cell array, the first column is use as the list of extensions, and the second column is used as the list of descriptions.
	uigetfile('FilterSpec', 'DialogTitle') displays a dialog box that has the title DialogTitle.
	ui getfile('FilterSpec', 'Di al ogTitle', x, y) positions the dialog box at position $[x,y]$, where x and y are the distance in pixel units from the left and top edges of the screen. Note that some platforms may not support dialog box placement.
	[FileName, PathName] = uigetfile() returns the name and path of the file selected in the dialog box. After you press the Done button, FileName contains the name of the file selected and PathName contains the name of the path selected. If you press the Cancel button or if an error occurs, FileName and PathName are set to 0.
	[FileName, PathName, FilterIndex] = uigetfile() returns the index of the filter selected in the dialog box. The indexing starts at 1. If the user clicks the Cancel button, closes the dialog window, or if an error occurs, FilterIndex is se to 0.
Remarks	If you select a file that does not exist, an error dialog appears. You can then enter another filename, or press the Cancel button.

Examples This statement displays a dialog box that enables you to retrieve a file. The statement lists all MATLAB M-files within a selected directory. The name and path of the selected file are returned in FileName and PathName. Note that uigetfile appends All Files(*. *) to the file types when FilterSpec is a string.

[FileName, PathName] = uigetfile('*.m', 'Select the M-file');

Select the I	M-file			? ×
Look <u>i</u> n:	🔁 graphics		-	
📄 @printtemp	olate	🖻 clf.m	2	copyobj.m
🧰 ja		🖹 clg.m	3	datachildren.m
🚞 private		🖹 close.m	3	delete.m
🖻 axes.m		closereq.m	2	drawnow.m
🖻 bwcontr.m		colornone.m	2] figcopytemplatelister
🖹 cla.m		Contents.m	3] figure.m
•				F
File <u>n</u> ame:				<u>O</u> pen
Files of <u>type</u> :	M-files (*.m)		<u> </u>	Cancel
	M-files (*.m) All Files (*.*)		<u>^</u>	

Use a cell array to specify a list of extensions and descriptions:

```
[filename, pathname] = uigetfile( ...
{'*.m; *.fig; *.mat; *.mdl', 'MATLAB Files (*.m, *.fig, *.mat, *.mdl)';
    '*.m', 'M-files (*.m)'; ...
    '*.fig', 'Figures (*.fig)'; ...
    '*.mat', 'MAT-files (*.mat)'; ...
    '*.mdl', 'Models (*.mdl)'; ...
    '*.*', 'All Files (*.*)'}, ...
'Pick a file');
```

Pick a file			? ×
Look jn:	🔄 graphics	•	E 🔺 📰 🏢
📄 @printtemp	late	🖻 clf.m	🖻 copyobj.m
🧰 ja		🖻 clg.m	🖹 datachildren.m
🚞 private		🖻 close.m	🖻 delete.m
🖹 axes.m		🖻 closereq.m	🖹 drawnow.m
🖹 bwcontr.m		🖹 colornone.m	🖹 figcopytemplatelis
🖻 cla.m		Contents.m	🗈 figure.m
•			Þ
File <u>n</u> ame:			<u>O</u> pen
Files of type:	MATLAB Files	(*.m,*.fig,*.mat,*.mdl)	Cancel
		(*.m,*.fig,*.mat,*.mdl)	
	M-files (*.m) Figures (*.fig)		
	MAT-files (*.m/	at)	
	Models (*.mdl)	•	
	All Files (*.*)		

Separate multiple extensions with no descriptions with semi-colons.

```
[filename, pathname] = uigetfile(...
{'*.m';'*.mdl';'*.mat';'*.*'},'File Selector');
```

File Select	or			? ×
Look jn:	🔄 graphics		- 🗈 e	* 📰
📄 @printtemp	olate	🖻 clf.m	🖻 cc	pyobj.m
📄 ja		🖻 clg.m	🖹 da	itachildren.m
📄 private		🖻 close.m	🖻 de	elete.m
🖹 axes.m		🖻 closereq.m	🖹 dr	awnow.m
🔄 🖻 bwcontr.m		colornone.m	🖹 fig	copytemplatelister
🖹 cla.m		Contents.m	🖹 fig	ure.m
•				F
File <u>n</u> ame:				<u>O</u> pen
Files of <u>type</u> :	M-files (*.m)			Cancel
	M-files (*.m)	l (x ID		
	Simulink Mod MAT-files (*.m	eis (".mai) iat)		
	All Files (*.*)	(av)		

Associate multiple extensions with one description using the first column in the cell array for the file extensions and the second column as the description:

```
[filename, pathname] = uigetfile( ...
{'*.m;*.fig;*.mat;*.mdl','MATLAB Files (*.m,*.fig,*.mat,*.mdl)';
'*.*', 'All Files (*.*)'}, 'Choose a File');
```

Choose a F	ile			? ×
Look <u>i</u> n:	🔁 graphics		-	
📄 @printtemp	olate	🖻 clf.m	3	copyobj.m
🧰 ja		🖻 clg.m	3	datachildren.m
🚞 private		🖻 close.m	2	delete.m
🖹 axes.m		🖹 closereq.m	3	drawnow.m
🖹 bwcontr.m		🖹 colornone.m	3	figcopytemplatelis
🖹 cla.m		Contents.m	3	figure.m
•				Þ
File <u>n</u> ame:				<u>O</u> pen
Files of type:	MATLAB Files	: (*.m,*.fig,*.mat,*.mdl)	R	Cancel
		(*.m,*.fig,*.mat,*.mdl)	N.	
	All Files (*.*)			

This code checks for the existence of the file and returns a message about the success or failure of the open operation.

```
[filename, pathname] = uigetfile('*.m', 'Find an M-file');
if isequal(filename, 0) |isequal(pathname, 0)
    disp('File not found')
else
    disp(['File ', pathname, filename, ' found'])
end
```

Find an M-file		? ×
Look in: 🔁 graphics		🔽 🖻 💼 🏢
📄 @printtemplate	🖻 clf.m	🖻 copyobj.m
ia 🔁	🖹 clg.m	🖹 datachildren.m
📄 private	🖹 close.m	🖻 delete.m
🖹 axes.m	🖹 closereq.m	🖻 drawnow.m
🖹 bwcontr.m	colornone.m	🖹 figcopytemplatelister
☑ cla.m	Contents.m	Igure.m
		Þ
File <u>n</u> ame:		<u>O</u> pen
Files of type: M-files (*.m)		Cancel
M-files (*.m) All Files (*.*)		

The exact appearance of the dialog box depends on your windowing system.

See Also uiputfile

uiimport

Purpose	Start the graphical user interface to import functions (Import Wizard)
Syntax	<pre>uiimport uiimport(filename) uiimport('-file') uiimport('-pastespecial') S = uiimport()</pre>
Description	ui i mport starts the Import Wizard in the current directory, presenting options to load data from a file or the clipboard.
	uiimport(filename) starts the Import Wizard, opening the file specified in filename. The Import Wizard displays a preview of the data in the file.
	uiimport('-file') works as above but presents the file selection dialog first.
	ui i mport(' - pastespeci al ') works as above but presents the clipboard contents first.
	S=uiimport(..) works as above with resulting variables stored as fields in the struct S.
	Note For ASCII data, you must verify that the Import Wizard correctly identified the column delimiter.
See Also	l oad, cl i pboard

Purpose	Create menus on figure windows
Syntax	<pre>uimenu('PropertyName', PropertyValue,) uimenu(parent, 'PropertyName', PropertyValue,) handle = uimenu('PropertyName', PropertyValue,) handle = uimenu(parent, 'PropertyName', PropertyValue,)</pre>
Description	ui menu creates a hierarchy of menus and submenus that are displayed in the figure window's menu bar. You can also use ui menu to create menu items for context menus.
	handle = ui menu(' $PropertyName$ ', PropertyValue,) creates a menu in the current figure's menu bar using the values of the specified properties and assigns the menu handle to handle.
	handl e = ui menu(parent, ' <i>PropertyName</i> ', PropertyValue,) creates a submenu of a parent menu or a menu item on a context menu specified by parent and assigns the menu handle to handl e. If parent refers to a figure instead of another uimenu object or a Uicontextmenu, MATLAB creates a new menu on the referenced figure's menu bar.
Remarks	MATLAB adds the new menu to the existing menu bar. Each menu choice can itself be a menu that displays its submenu when selected.
	ui menu accepts property name/property value pairs, as well as structures and cell arrays of properties as input arguments. The uimenu Callback property defines the action taken when you activate the menu item. ui menu optionally returns the handle to the created uimenu object.
	Uimenus only appear in figures whose WindowStyle is normal. If a figure containing uimenu children is changed to WindowStyle modal, the uimenu children still exist and are contained in the Children list of the figure, but are not displayed until the WindowStyle is changed to normal.
	The value of the figure MenuBar property affects the location of the uimenu on the figure menu bar. When MenuBar is figure, a set of built-in menus precedes the uimenus on the menu bar (MATLAB controls the built-in menus and their handles are not available to the user). When MenuBar is none, uimenus are the only items on the menu bar (that is, the built-in menus do not appear).

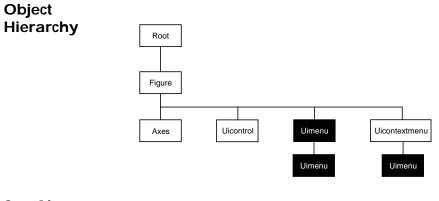
uimenu

You can set and query property values after creating the menu using set and get

Properties This table lists all properties useful to ui menu objects, grouping them by function. Each property name acts as a link to a description of the property.

Property Name	Property Description	Property Value
Controlling Style and Ap	ppearance	
Checked	Menu check indicator	Value: on, off Default: off
ForegroundCol or	Color of text	Value: Col or Spec Default: [0 0 0]
Label	Menu label	Value: string
Sel ect i onHi ghl i ght	Object highlighted when selected	Value: on, off Default: on
Separator	Separator line mode	Value: on, off Default: off
Vi si bl e	Uimenu visibility	Value: on, off Default: on
General Information Ab	out the Object	
Accelerator	Keyboard equivalent	Value: character
Children	Handles of submenus	Value: vector of handles
Enabl e	Enable or disable the uimenu	Value: on, off Default: on
Parent	Uimenu obiect's parent	Value [,] handle

Parent	Uimenu object's parent	Value: handle
Tag	User-specified object identifier	Value: string
Туре	Class of graphics object	Value: string (read-only) Default: ui menu


Property Name	Property Description	Property Value	
UserData	User-specified data	Value: matrix	
Controlling the Object	Position		
Position	Relative uimenu positionValue: scalarDefault: [1]		
Controlling Callback Re	outine Execution		
BusyAction	Callback routine interruption	Value: cancel , queue Default: queue	
ButtonDownFcn	Button press callback routine	Value: string	
Callback	Control action	Value: string	
CreateFcn	Callback routine executed during object creation	Value: string	
DeleteFcn	Callback routine executed during object deletion	Value: string	
Interrupti bl e	Callback routine interruption mode	Value: on, off Default: on	
Controlling Access to C	bjects		
Handl eVi si bi lity	Whether handle is accessible from command line and GUIs	Value: on, callback, off Default: on	
HitTest	Whether selectable by mouse click	Value: on, off Default: on	

Examples This example creates a menu labeled **Workspace** whose choices allow users to create a new figure window, save workspace variables, and exit out of MATLAB. In addition, it defines an accelerator key for the Quit option.

f = uimenu('Label', 'Workspace'); uimenu(f, 'Label', 'New Figure', 'Callback', 'figure'); uimenu(f, 'Label', 'Save', 'Callback', 'save');

uimenu

uimenu(f, 'Label', 'Quit', 'Callback', 'exit',... 'Separator', 'on', 'Accelerator', 'Q');

ui control, ui contextmenu, gcbo, set, get, figure

Modifying	You can set and query graphics object properties in two ways:
Properties	• The Property Editor is an interactive tool that enables you to see and change object property values.
	 The set and get commands enable you to set and query the values of properties
	To change the default value of properties see Setting Default Property Values.
Uimenu Properties	This section lists property names along with the type of values each accepts. Curly braces { } enclose default values.
	You can set default uimenu properties on the figure and root levels:
	<pre>set(0, 'DefaultUimenuPropertyName', PropertyValue) set(gcf, 'DefaultUimenuPropertyName', PropertyValue) set(menu_handle, 'DefaultUimenuProperty', PropertyValue)</pre>
	Where <i>PropertyName</i> is the name of the uimenu property and PropertyVal ue is the value you are specifying. Use set and get to access uimenu properties.
	Accelerator character
	<i>Keyboard equivalent.</i> A character specifying the keyboard equivalent for the menu item. This allows users to select a particular menu choice by pressing the specified character in conjunction with another key, instead of selecting the menu item with the mouse. The key sequence is platform specific:
	• For Microsoft Windows systems, the sequence is Ctrl -Accel erator. These keys are reserved for default menu items: c, v, and x.
	• For UNIX systems, the sequence is Ctrl -Accel erator. These keys are reserved for default menu items: o, p, s, and w.
	You can define an accelerator only for menu items that do not have children menus. Accelerators work only for menu items that directly execute a callback routine, not items that bring up other menus.
	Note that the menu item does not have to be displayed (e.g., a submenu) for the accelerator key to work. However, the window focus must be in the figure when the key sequence is entered.

BusyActioncancel | {queue}

Callback routine interruption. If a callback is executing and the user triggers an event (such as a mouse click) on an object for which a callback is defined, that callback attempts to interrupt the first callback. The first callback can be interrupted only at a drawnow, figure, getframe, pause, or waitfor command; if the callback does not contain any of these commands, it cannot be interrupted.

If the Interrupti bl e property of the object whose callback is executing is off (the default value is on), the callback cannot be interrupted (except by certain callbacks; see the note below). The BusyActi on property of the object whose callback is waiting to execute determines what happens to the callback:

- If the value is queue, the callback is added to the event queue and executes after the first callback finishes execution.
- If the value is cancel, the event is discarded and the callback is not executed.

Note If the interrupting callback is a Del eteFcn or CreateFcn callback or a figure's Cl oseRequest or Resi zeFcn callback, it interrupts an executing callback regardless of the value of that object's Interrupti bl e property. The interrupting callback starts execution at the next drawnow, figure, getframe, pause, or waitfor statement.

ButtonDownFcn string

The button down function has no effect on uimenu objects.

Callback string

Menu action. A callback routine that executes whenever you select the menu. Define this routine as a string that is a valid MATLAB expression or the name of an M-file. The expression executes in the MATLAB workspace.

A menu with children (submenus) executes its callback routine before displaying the submenus. A menu without children executes its callback routine when you *release* the mouse button (i.e., on the button up event). **Checked** on $| \{ off \}$

Menu check indicator. Setting this property to on places a check mark next to the corresponding menu item. Setting it to off removes the check mark. You can use this feature to create menus that indicate the state of a particular option. Note that there is no formal mechanism for indicating that an unchecked menu item will become checked when selected. Also, this property does not display the check mark on top level menus or submenus, although you can change the value of the property for these menus.

Note the following platform differences:

- On UNIX, the check mark is *not* displayed on submenus that have submenus.
- On Windows, the check mark is displayed on submenus, whether or not they have submenus.

Children vector of handles

Handles of submenus. A vector containing the handles of all children of the uimenu object. The children objects of uimenus are other uimenus, which function as submenus. You can use this property to re-order the menus.

Clipping {on} | off

Cl i ppi ng has no effect on uimenu objects.

CreateFcn string

Callback routine executed during object creation. This property defines a callback routine that executes when MATLAB creates a uimenu object. You must define this property as a default value for uimenus. For example, the statement,

```
set(0, 'DefaultUimenuCreateFcn', 'set(gcf, ''IntegerHandle'',...
''off'''))
```

defines a default value on the root level that sets the figure IntegerHandl e property to off whenever you create a uimenu object. Setting this property on an existing uimenu object has no effect. MATLAB executes this routine after setting all property values for the uimenu.

The handle of the object whose CreateFcn is being executed is accessible only through the root CallbackObject property, which can be queried using gcbo.

DeleteFcn string

Delete uimenu callback routine. A callback routine that executes when you delete the uimenu object (e.g., when you issue a del et e command or cause the figure containing the uimenu to reset). MATLAB executes the routine before destroying the object's properties so these values are available to the callback routine.

The handle of the object whose Del eteFcn is being executed is accessible only through the root Call back0bj ect property, which is more simply queried using gcbo.

Enable {on} | off

Enable or disable the uimenu. This property controls whether a menu item can be selected. When not enabled (set to off), the menu Label appears dimmed, indicating the user cannot select it.

ForegroundCol or Col or Spec X-Windows only

Color of menu label string. This property determines color of the text defined for the Label property. Specify a color using a three-element RGB vector or one of the MATLAB predefined names. The default text color is black. See Col orSpec for more information on specifying color.

HandleVisibility {on} | callback | off

Control access to object's handle by command-line users and GUIs. This property determines when an object's handle is visible in its parent's list of children. Handl eVi si bility is useful for preventing command-line users from accidentally drawing into or deleting a figure that contains only user interface devices (such as a dialog box).

Handles are always visible when HandleVisibility is on.

Setting Handl eVi si bi l i ty to cal l back causes handles to be visible from within callback routines or functions invoked by callback routines, but not from within functions invoked from the command line. This provide a means to protect GUIs from command-line users, while allowing callback routines to have complete access to object handles.

Setting Handl eVi si bility to off makes handles invisible at all times. This may be necessary when a callback routine invokes a function that might potentially damage the GUI (such as evaluating a user-typed string), and so temporarily hides its own handles during the execution of that function.

When a handle is not visible in its parent's list of children, it cannot be returned by functions that obtain handles by searching the object hierarchy or querying handle properties. This includes get, findobj, gca, gcf, gco, newplot, cl a, cl f, and cl ose.

When a handle's visibility is restricted using call back or off, the object's handle does not appear in its parent's Children property, figures do not appear in the root's CurrentFigure property, objects do not appear in the root's CallbackObj ect property or in the figure's CurrentObject property, and axes do not appear in their parent's CurrentAxes property.

You can set the root ShowHi ddenHandl es property to on to make all handles visible, regardless of their Handl eVi si bility settings (this does not affect the values of the Handl eVi si bility properties).

Handles that are hidden are still valid. If you know an object's handle, you can set and get its properties, and pass it to any function that operates on handles.

HitTest {on} | off

Selectable by mouse click. This property has no effect on uimenu objects.

Interruptible {on} | off

Callback routine interruption mode. If a callback is executing and the user triggers an event (such as a mouse click) on an object for which a callback is defined, that callback attempts to interrupt the first callback. MATLAB processes the callbacks according to these factors:

- The Interrupti bl e property of the object whose callback is executing
- Whether the executing callback contains drawnow, figure, getframe, pause, or waitfor statements
- The BusyActi on property of the object whose callback is waiting to execute

If the Interrupti bl e property of the object whose callback is executing is on (the default), the callback can be interrupted. The callback interrupts execution at the next drawnow, fi gure, getframe, pause, or waitfor statement, and processes the events in the event queue, which includes the waiting callback.

If the Interrupti bl e property of the object whose callback is executing is off, the callback cannot be interrupted (except by certain callbacks; see the note

below). The BusyActi on property of the object whose callback is waiting to execute determines what happens to the callback.

Note If the interrupting callback is a Del eteFcn or CreateFcn callback or a figure's Cl oseRequest or Resi zeFcn callback, it interrupts an executing callback regardless of the value of that object's Interrupti bl e property. The interrupting callback starts execution at the next drawnow, fi gure, getframe, pause, or waitfor statement. A figure's WindowButtonDownFcn callback routine, or an object's ButtonDownFcn or Callback routine are processed according to the rules described above.

Label string

Menu label. A string specifying the text label on the menu item. You can specify a mnemonic using the "&" character. Whatever character follows the "&" in the string appears underlined and selects the menu item when you type that character while the menu is visible. The "&" character is not displayed. To display the "&" character in a label, use two "&" characters in the string:

'0&pen selection' yields Open selection

'Save && Go' yields Save & Go

Parent handle

Uimenu's parent. The handle of the uimenu's parent object. The parent of a uimenu object is the figure on whose menu bar it displays, or the uimenu of which it is a submenu. You can move a uimenu object to another figure by setting this property to the handle of the new parent.

Position scalar

Relative menu position. The value of Position indicates placement on the menu bar or within a menu. Top-level menus are placed from left to right on the menu bar according to the value of their Position property, with 1 representing the left-most position. The individual items within a given menu are placed from top to bottom according to the value of their Position property, with 1 representing the top-most position.

Selected on | {off}

This property is not used for uimenu objects.

SelectionHighlight on | off

This property is not used for uimenu objects.

Separator on | {off}

Separator line mode. Setting this property to on draws a dividing line above the menu item.

Tag string

User-specified object label. The Tag property provides a means to identify graphics objects with a user-specified label. This is particularly useful when constructing interactive graphics programs that would otherwise need to define object handles as global variables or pass them as arguments between callback routines. You can define Tag as any string.

Type string (read only)

Class of graphics object. For uimenu objects, Type is always the string ' ui menu'.

UserData matrix

User-specified data. Any matrix you want to associate with the uimenu object. MATLAB does not use this data, but you can access it using the set and get commands.

Visible {on} | off

Uimenu visibility. By default, all uimenus are visible. When set to off, the uimenu is not visible, but still exists and you can query and set its properties.

Purpose	Convert to unsigned integer		
Syntax	i = uint8(x) i = uint16(x) i = uint32(x) i = uint64(x)		

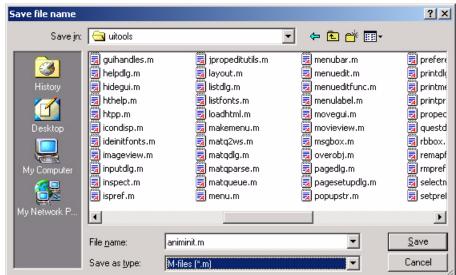
Description i = ui nt*(x) converts the vector x into an unsigned integer. x can be any numeric object (such as a doubl e). The results of a ui nt* operation are shown in the next table.

Operation	Output Range	Output Type	Bytes per Element	Output Class
ui nt 8	0 to 255	Unsigned 8-bit integer	1	ui nt8
ui nt 16	0 to 65,535	Unsigned 16-bit integer	2	ui nt 16
ui nt 32	0 to 4,294,967,295	Unsigned 32-bit integer	4	ui nt 32
ui nt64	0 to 18,446,744,073,709,551,615	Unsigned 64-bit integer	8	ui nt64

A value of x above or below the range for a class is mapped to one of the endpoints of the range. If x is already an unsigned integer of the same class, ui nt * has no effect.

The ui nt* class is primarily meant to store integer values. Most operations that manipulate arrays without changing their elements are defined. (Examples are reshape, si ze, the logical and relational operators, subscripted assignment, and subscripted reference.) No math operations except for sum are defined for ui nt* since such operations are ambiguous on the boundary of the set. (For example they could wrap or truncate there.) You can define your own methods for ui nt* (as you can for any object) by placing the appropriately named method in an @ui nt* directory within a directory on your path.

Type help datatypes for the names of the methods you can overload.


See Also double, int8, int16, int32, int64, single

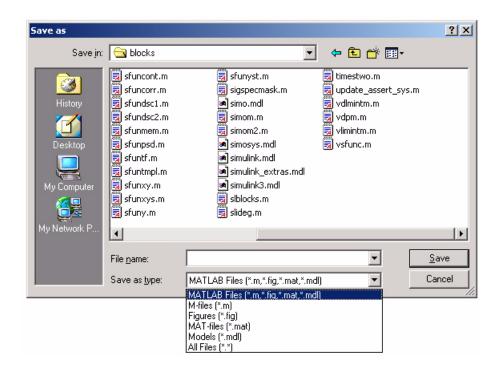
Purpose	Standard dialog box for saving files			
Syntax	<pre>uiputfile uiputfile('FilterSpec') uiputfile('FilterSpec', 'DialogTitle') uiputfile('FilterSpec', 'DialogTitle', x, y) [FileName, PathName] = uiputfile() [FileName, PathName, FilterIndex] = uiputfile()</pre>			
Description	ui put f i l e displays a dialog box used to select a file for writing. The dialog box lists the files and directories in the current directory using the default			
	ui putfile('FilterSpec') displays a dialog box that contains a list of files in the current directory determined by FilterSpec.			
	FilterSpec determines what files are displayed initialy in the dialog box. For example '*. m' lists all MATLAB M-files.			
	If FilterSpec is a cell array, the first column is used as the list of extensions, and the second column is used as the list of descriptions.			
	If FilterSpec is not specified, ui putfile uses the default list of file types (i.e., all MATLAB files).			
	FilterSpec can also be a default file name, in which case, the file's extension is used as the default filter.			
	ui putfile('FilterSpec', 'Di al ogTitle') displays a dialog box that has the title Di al ogTitle. To use the default file types and specify a dialog title, use: ui putfile('', 'Di al ogTitle')			
	ui putfile('FilterSpec', 'Di al ogTitle', x, y) positions the dialog box at screen position $[x,y]$, where x and y are the distance in pixel units from the left and top edges of the screen. Note that positioning works only on UNIX platforms.			
	[FileName, PathName] = uiputfile() returns the name and path of the file selected in the dialog box. If the user clicks the Cancel button, closes the dialog window, or if an error occurs, FileName and PathName are set to 0.			

[FileName, PathName, FilterIndex] = uiputfile(...) returns the index of the filter selected in the dialog box. The indexing starts at 1. If the user clicks the**Cancel**button, closes the dialog window, or if an error occurs, FilterIndex is se to 0.

RemarksIf you select a file that already exists, a prompt asks whether you want to
overwrite the file. If you choose to, the function successfully returns but does
not delete the existing file (which is the responsibility of the calling routines).
If you select Cancel in response to the prompt, the function returns control back
to the dialog box so you can enter another filename.

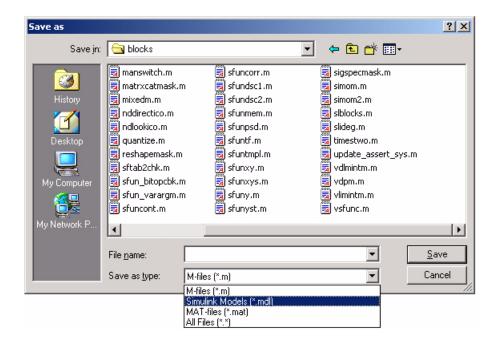
Examples This statement displays a dialog box titled 'Save file name' with the filename ani mi ni t. m.

[file, path] = uiputfile('animinit.m', 'Save file name');

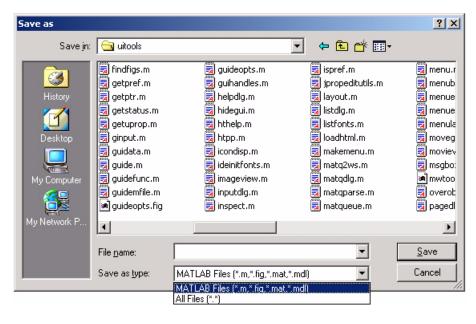

This statement displays a dialog box titled ' Save Workspace As' with the filter specifier set to MAT-files.

[file, path] = uiputfile('*.mat', 'Save Workspace As');

You can specify a description of the file type in the FilterSpec argument:


[filename, pathname, filterindex] = uiputfile(...

```
{'*.m; *.fig; *.mat; *.mdl', 'MATLAB Files (*.m, *.fig, *.mat, *.mdl)';
'*.m', 'M-files (*.m)'; ...
'*.fig', 'Figures (*.fig)'; ...
'*.mat', 'MAT-files (*.mat)'; ...
'*.mdl', 'Models (*.mdl)'; ...
'*.*', 'All Files (*.*)'}, ...
'Save as');
```



When you use multiple extensions with no descriptions, you must separate each with a semicolon:

```
[filename, pathname] = uiputfile( ...
{'*.m';'*.mdl';'*.mat';'*.*'}, ...
'Save as');
```


Associate multiple extensions with one description like this:

[filename, pathname] = uiputfile({'*.m;*.fig;*.mat;*.mdl',... 'MATLAB Files (*.m,*.fig,*.mat,*.mdl)';'*.*',... 'All Files (*.*)'},'Save as');

uigetfile

Purpose	Control program execution
Syntax	ui wai t (h) ui wai t ui resume(h)
Description	The ui wai t and ui resume functions block and resume MATLAB program execution.
	ui wait blocks execution until ui resume is called or the current figure is deleted. This syntax is the same as ui wait(gcf).
	ui wai t (h) blocks execution until ui resume is called or the figure h is deleted.
	ui resume(h) resumes the M-file execution that ui wait suspended.
Remarks	When creating a dialog, you should have a uicontrol with a callback that calls ui resume or a callback that destroys the dialog box. These are the only methods that resume program execution after the ui wait function blocks execution.
	ui wait is a convenient way to use the waitfor command. You typically use it in conjunction with a dialog box. It provides a way to block the execution of the M-file that created the dialog, until the user responds to the dialog box. When used in conjunction with a modal dialog, ui wait/ui resume can block the execution of the M-file <i>and</i> restrict user interaction to the dialog only.
See Also	ui control , ui menu, wai tfor, fi gure, di al og

uisetcolor

Purpose	Set an object's Col or Spec from a dialog box interactively
Syntax	c = uisetcolor(h_or_c, 'DialogTitle');
Description	ui set col or displays a dialog box for the user to fill in, then applies the selected color to the appropriate property of the graphics object identified by the first argument.
	h_or_c can be either a handle to a graphics object or an RGB triple. If you specify a handle, it must specify a graphics object that have a Col or property. If you specify a color, it must be a valid RGB triple (e.g., [1 0 0] for red). The color specified is used to initialize the dialog box. If no initial RGB is specified, the dialog box initializes the color to black.
	Di al $\operatorname{ogTitle}$ is a string that is used as the title of the dialog box.
	c is the RGB value selected by the user. If the user presses Cancel from the dialog box, or if any error occurs, c is set to the input RGB triple, if provided; otherwise, it is set to 0.
See Also	Col or Spec

Purpose	Modify font characteristics for objects interactively
Syntax	<pre>uisetfont uisetfont(h) uisetfont(S) uisetfont(h, 'DialogTitle') uisetfont(S, 'DialogTitle') S = uisetfont()</pre>
Description	ui setfont enables you to change font properties (FontName, FontUnits, FontSize, FontWeight, and FontAngle) for a text, axes, or uicontrol object. The function returns a structure consisting of font properties and values. You can specify an alternate title for the dialog box.
	ui setfont displays the dialog box and returns the selected font properties.
	ui setfont (h) displays a dialog box, initializing the font property values with the values of those properties for the object whose handle is h. Selected font property values are applied to the current object. If a second argument is supplied, it specifies a name for the dialog box.
	ui setfont (S) displays a dialog box, initializing the font property values with the values defined for the specified structure (S). S must define legal values for one or more of these properties: FontName, FontUnits, FontSize, FontWeight, and FontAngl e and the field names must match the property names exactly. If other properties are defined, they are ignored. If a second argument is supplied, it specifies a name for the dialog box.
	ui setfont (' Di al ogTi tl e') displays a dialog box with the title Di al ogTi tl e and returns the values of the font properties selected in the dialog box.
	If a left-hand argument is specified, the properties $FontName$, $FontUnits$, $FontSize$, $FontWeight$, and $FontAngle$ are returned as fields in a structure. If the user presses Cancel from the dialog box or if an error occurs, the output value is set to 0.
Example	These statements create a text object, then display a dialog box (labeled Update Font) that enables you to change the font characteristics:
	h = text(.5, .5, 'Figure Annotation');

```
uisetfont(h, 'Update Font')
These statements create two push buttons, then set the font properties of one
based on the values set for the other:
    % Create push button with string ABC
    c1 = uicontrol('Style', 'pushbutton', ...
        'Position', [10 10 100 20], 'String', 'ABC');
    % Create push button with string XYZ
    c2 = uicontrol('Style', 'pushbutton', ...
        'Position', [10 50 100 20], 'String', 'XYZ');
    % Display set font dialog box for c1, make selections, save to d
    d = uisetfont(c1);
    % Apply those settings to c2
    set(c2, d)
```

See Also axes, text, ui control

uistack

Purpose	Restack objects
Syntax	uistack(h) uistack(h, stackopt) uistack(h, stackopt, step)
Description	 ui stack enables you to change the stacking order of objects. ui stack(h, stackopt) moves h in the stacking order, where stackopt is one of the following: 'up' - moves h up one position in the stacking order 'down' - moves h down one position in the stacking order 'top' - moves h to the top of the current stack 'bottom' - moves h to the bottom of the current stack ui stack(h, 'up', n) moves h up n steps
Example	<pre>uistack(h, 'down', n) moves h down n steps uistack(h, 'down', n) moves h down n steps The following code moves the child that is third in the stacking order of the figure handle h0bj ect down two positions. v = allchild(h0bj ect) uistack(v(3), 'down', 2)</pre>
See Also	

undocheckout

Purpose	Undo previous checkout from source control system
Graphical Interface	As an alternative to the undocheckout function, use Source Control Undo Checkout in the Editor, Simulink, or Stateflow File menu.
Syntax	<pre>undocheckout('filename') undocheckout({'filename1','filename2','filename3',})</pre>
Description	undocheckout('filename') makes the file filename available for checkout, where filename does not reflect any of the changes you made after you last checked it out. filename must be the full pathname for the file.
	undocheckout ({'filename1', 'filename2', 'filename3',}) makes the filename1 through filenamen available for checkout, where the files do not reflect any of the changes you made after you last checked them out. Use the full pathnames for the files.
Examples	Typing undocheckout({'/matlab/mymfiles/clock.m', '/matlab/mymfiles/calendar.m'}) undoes the checkouts of /matlab/mymfiles/clock.m and /matlab/mymfiles/calendar.m from the source control system.
See Also	checki n, checkout

union

Purpose	Set union of two vectors
Syntax	<pre>c = uni on(A, B) c = uni on(A, B, ' rows') [c, i a, i b] = uni on()</pre>
Description	c = uni on(A, B) returns the combined values from A and B but with no repetitions. The resulting vector is sorted in ascending order. In set theoretic terms, c = A \cup B. A and B can be cell arrays of strings.
	c = uni on(A, B, 'rows') when A and B are matrices with the same number of columns returns the combined rows from A and B with no repetitions.
	$[c,ia,ib]=union(\ldots)$ also returns index vectors ia and ib such that $c=a(ia)\cupb(ib)$, or for row combinations, $c=a(ia,:)\cupb(ib,:)$. If a value appears in both a and b , uni on indexes its occurrence in b . If a value appears more than once in b or in a (but not in b), uni on indexes the last occurrence of the value.
Examples	a = [-1 0 2 4 6]; b = [-1 0 1 3]; [c, ia, ib] = union(a, b); c =
	-1 0 1 2 3 4 6
	ia =
	3 4 5
	ib =
	1 2 3 4
See Also	intersect, setdiff, setxor, unique, ismember, issorted

unique

Purpose	Unique	elem	ents of	a vecto	or							
Syntax	b = un b = un [b, m, n	i que(A, 'row									
Description	b = un resultir	ng vec	tor is so	orted in	n ascen	ding oı	rder. A o	can be a		-		
	b = uni que(A, 'rows') returns the unique rows of A.											
	[b, m, n and A = For row	= b(n)	. Each	eleme	nt of m i	s the g	reatest	subscr				
Examples	A =	[1 1	562	3 3 9	862	4]						
	A = 1	1	5	6	2	3	3	9	8	6	2	4
	[b, n b =	ı, n] ÷	= uni qu	ıe(A)								
		1	2	3	4	5	6	8	9			
	m =			_								
	n =	2	11	7	12	3	10	9	8			
	1	1	5	6	2	3	3	8	7	6	2	4
	A(m) ans			0		-	0	0	0			
		1	2	3	4	5	6	8	9			
	b(n) ans	=	-	0	0	0	0	0	0	0	0	
	1	1	5	6	2	3	3	9	8	6	2	4

Because NaNs are not equal to each other, unique treats them as unique elements.

unique([1 1 NaN NaN]) ans = 1 NaN NaN

See Also intersect, ismember, issorted, setdiff, setxor, union

unix

Purpose	Execute a UNIX command and return result
Syntax	<pre>unix command status = unix('command') [status, result] = unix('command') [status, result] = unix('command', '-echo')</pre>
Description	uni \mathbf{x} command calls upon the UNIX operating system to execute the given command.
	status = $uni x(command)$ returns completion status to the status variable.
	[status, result] = unix('command') returns the standard output to the result variable, in addition to completion status.
	[status, result] = unix('command', '-echo') forces the output to the Command Window, even though it is also being assigned into a variable.
Examples	List all users that are currently logged in. It returns a zero (success) in ${\bf s}$ and a string containing the list of users in ${\bf w}.$
	[s, w] = uni x('who');
	The next example returns a nonzero value in s to indicate failure and returns an error message in w because why is not a UNIX command.
	<pre>[s,w] = unix('why') s = 1 w = why: Command not found.</pre>
	When including the - echo flag, MATLAB displays the results of the command in the Command Window as it executes as well as assigning the results to the return variable, w.
	[s, w] = unix('who', '-echo');
See Also	dos, ! (exclamation point), perl, system

Purpose	Piecewise polynomial details					
Syntax	<pre>[breaks, coefs, l, k, d] = unmkpp(pp)</pre>					
Description	[breaks, coefs, l, k, d] = unmkpp(pp) extracts, from the piecewise polynomial pp, its breaks breaks, coefficients coefs, number of pieces l, order k, and dimension d of its target. Create pp using spl i ne or the spline utility mkpp.					
Examples	This example creates a description of the quadratic polynomial					
	$\frac{-x^2}{4} + x$					
	as a piecewise polynomial pp, then extracts the details of that description.					
	<pre>pp = mkpp([-8 -4], [-1/4 1 0]); [breaks, coefs, l, k, d] = unmkpp(pp)</pre>					
	breaks = -8 -4					
	coefs = -0.2500 1.0000 0					
	l = 1					
	k = 3					
	d = 1					
o						

See Also mkpp, ppval, spline

unregisterallevents (COM)

Purpose	Unregister all events for a control			
Syntax	unregisterallevents(h)			
Arguments	h Handle for a MATLAB COM control object.			
Description	Unregister all events that have previously been registered with control, h. After calling unregi steral levents, the control will no longer respond to any events until you register them again using the regi sterevent function.			
Examples	Create an mwsamp control, registering three events and their respective handler routines. Use the eventlisteners function to see the event handler used by each event:			
	<pre>f = figure ('pos', [100 200 200 200]); h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], f, {'Click' 'myclick'; 'DblClick' 'my2click'; 'MouseDown' 'mymoused'});</pre>			
	eventlisteners(h)			
	ans =			
	'click' 'myclick' 'dblclick' 'my2click'			
	'mousedown' 'mymoused'			

Unregister all of these events at once with unregisteral levents. Now, calling eventl i steners returns an empty cell array, indicating that there are no longer any events registered with the control:

```
unregisterallevents(h);
eventlisteners(h)
ans =
    {}
```

To unregister specific events, use the unregisterevent function:

```
unregisterevent(h, {'click' 'myclick'; 'dblclick' 'my2click'});
eventlisteners(h)
ans =
        {}
```

See Also events, eventlisteners, registerevent, unregisterevent, i sevent

unregisterevent (COM)

Purpose	Unregister an event handler with a control's event			
Syntax	<pre>unregisterevent(h, callback {event1 eventhandler1; event2 eventhandler2;})</pre>			
Arguments	h Handle for a MATLAB COM control object.			
	cal l back Name of an M-function previously registered with this object to handle events. Callbacks are registered using either <code>actxcontrol or registerevent</code> .			
	event Any event associated with h that can be triggered. Specify event using the event name. Unlike actxcontrol, unregisterevent does not accept numeric event identifiers.			
	eventhandl er Name of the event handler routine that you want to unregister for the event specified in the preceding event argument.			
Description	Unregister the specified call back routines with all events for this control, or unregister each specified event handler routine with the event associated with it in the argument list. Once you unregister a callback or event handler routine, MATLAB no longer responds to the event using that routine.			
	The strings specified in the call back, event, and event handler arguments are not case sensitive.			
	You can unregister events at any time after a control has been created.			
Examples	Create an mwsamp control and register all events with the same callback routine, sampev. Use the eventlisteners function to see the event handler used by each event. In this case, each event, when fired, will call sampev. m:			
	<pre>f = figure ('pos', [100 200 200 200]); h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], f, 'sampev');</pre>			
	<pre>eventlisteners(h) ans = 'click' 'sampev'</pre>			

' dbl cl i ck'	'sampev'
'mousedown'	'sampev'

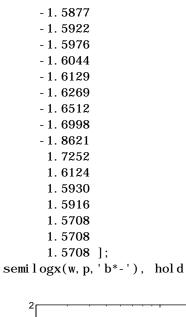
Unregister just the dbl cl i ck event. Now, when you list the registered events using eventl i steners, you see that dbl cl i ck is no longer registered. The control will no longer respond when you double-click the mouse over it:

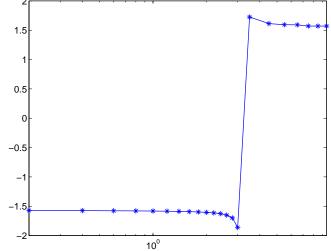
```
unregisterevent(h, {'dblclick' 'sampev'});
eventlisteners(h)
ans =
    'click' 'sampev'
    'mousedown' 'sampev'
```

This time, register the cl i ck and dbl cl i ck events with a different event handler for each: mycl i ck and my2cl i ck, respectively:

```
registerevent(h, {'click' 'myclick'; 'dblclick' 'my2click'});
eventlisteners(h)
ans =
    'click' 'myclick'
    'dblclick' 'my2click'
```

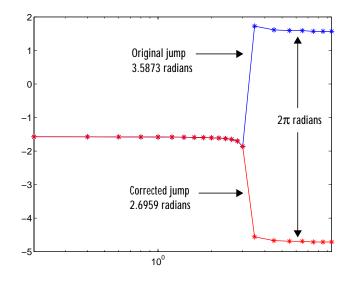
You can unregister these same events by specifying event names and their handler routines in a cell array. Note that event1 i steners now returns an empty cell array, meaning that no events are registered for the mwsamp control:


```
unregisterevent(h, {'click' 'myclick'; 'dblclick' 'my2click'});
eventlisteners(h)
ans =
        {}
```


In this last example, you could have used unregisterallevents instead: unregisterallevents(h);

See Also events, eventlisteners, registerevent, unregisteral levents, i sevent

unwrap


Purpose	Correct phase angles to produce smoother phase plots
Syntax	<pre>Q = unwrap(P) Q = unwrap(P, tol) Q = unwrap(P, [], dim) Q = unwrap(P, tol, dim)</pre>
Description	Q = unwrap(P) corrects the radian phase angles in a vector P by adding multiples of $\pm 2\pi$ when absolute jumps between consecutive elements of P are greater than the default jump tolerance of π radians. If P is a matrix, unwrap operates columnwise. If P is a multidimensional array, unwrap operates on the first nonsingleton dimension.
	Q = unwrap(P, tol) uses a jump tolerance tol instead of the default value, π .
	Q = unwrap(P, [], dim) unwraps along dim using the default tolerance.
	Q = unwrap(P, tol, dim) uses a jump tolerance of tol.
	Note A jump tolerance less than π has the same effect as a tolerance of π . For a tolerance less than π , if a jump is greater than the tolerance but less than π , adding $\pm 2\pi$ would result in a jump larger than the existing one, so unwrap chooses the current point. If you want to eliminate jumps that are less than π , try using a finer grid in the domain.
Examples	Example 1. The following phase data comes from the frequency response of a third-order transfer function. The phase curve jumps 3. 5873 radians between w = 3. 0 and w = 3. 5, from - 1. 8621 to 1. 7252. w = [0: . 2: 3, 3. 5: 1: 10]; p = [0 -1. 5728 -1. 5747 -1. 5772 -1. 5790 -1. 5816 -1. 5852

Using unwrap to correct the phase angle, the resulting jump is 2. 6959, which is less than the default jump tolerance π . This figure plots the new curve over the original curve.

```
semilogx(w, unwrap(p), 'r*-')
```


Note If you have the Control System Toolbox, you can create the data for this example with the following code.

h = freqresp(tf(1, [1 .1 10 0]));
p = angle(h(:));

Q =

Example 2. Array P features smoothly increasing phase angles except for discontinuities at elements (3, 1) and (1, 2).

P = [0]	7.0686	1.5708	2.3562
0. 1963	0. 9817	1.7671	2.5525
6.6759	1.1781	1.9635	2.7489
0. 5890	1.3744	2.1598	2.9452]

The function Q = unwrap(P) eliminates these discontinuities.

0	7.0686	1.5708	2.3562
0. 1963	7.2649	1.7671	2.5525

0.3927	7.4613	1.9635	2.7489
0. 5890	7.6576	2.1598	2.9452

See Also abs, angle

unzip

Purpose	Extract contents of zip file
Syntax	unzip('zipfilename') unzip('zipfilename','directory')
Description	unzi p('zi pfilename') extracts the contents of (unzips) the zip file named zi pfilename into the current directory, where zi pfilename was created using ZIP or any standard zip application such as PKZIP. The path for zi pfilename is relative to the current directory.
	unzi p('zi pfilename', 'di rectory') extracts the contents of the zip file named zi pfilename into the specified directory. The paths for zi pfilename and di rectory are relative to the current directory.
Examples	Extract the contents of d: /mymfiles/viewlet. zip, putting the resulting files in the current directory. unzip('d: /mymfiles/viewlet. zip')
	Unzip the zip file <code>mymfiles</code> in the current directory, putting the resulting files in the directory <code>archives</code> , which is at the same level as the current directory. <code>unzip('mymfiles','/archives')</code>
See Also	zi p

Purpose	Convert string to upper case
Syntax	<pre>t = upper('str') B = upper(A)</pre>
Description	t = upper('str') converts any lower-case characters in the string str to the corresponding upper-case characters and leaves all other characters unchanged.
	B = upper(A) when A is a cell array of strings, returns a cell array the same size as A containing the result of applying upper to each string within A.
Examples	<pre>upper('attention!') is ATTENTION!.</pre>
Remarks	Character sets supported:
	PC: Windows Latin-1
	Other: ISO Latin-1 (ISO 8859-1)
See Also	lower

urlread

Purpose	Read contents at URL
Syntax	<pre>s = urlread('url') s = urlread('url', 'method', 'params') [s,status] = urlread()</pre>
Description	s = urlread('url') reads the content at a URL into the string s. If the server returns binary data, s will be unreadable.
	s = urlread('url', 'method', 'params') reads the content at a URL into the string s, passing information to the server as part of the request where method can be get or post, and params is a cell array of parameter-value pairs.
	[s, status] = urlread() catches any errors and returns the error code.
Examples	<pre>Download Content from Web Page Download the contents of the Top Authors list at MATLAB Central File Exchange, then look for a specific author in the results. s = url read('http://www.mathworks.com/matlabcentral/fileexchange/ TopFiles.jsp?type=category&id=&value=TopAuthors');</pre>
	<pre>findstr(s, 'My_name')</pre>
	<pre>Download Content from File on FTP Server s = urlread('ftp://ftp.mathworks.com/pub/pentium/Moler_1.txt')</pre>
	The file Mol er_1 .txt displays in the Command Window.
	<pre>Download Content from Local File s = urlread('file: ///c: /winnt/matlab.ini')</pre>
See Also	urlwrite

Purpose	Save contents of URL to file
Syntax	<pre>urlwrite('url','filename') f = urlwrite('url','filename') f = urlwrite('url','filename', method, params) [f,status] = urlwrite()</pre>
Description	urlwrite('url', 'filename') reads the contents of the specified URL, saving the contents to filename. Specify the path for filename or it is saved in the MATLAB current directory.
	f = urlwrite('url', 'filename') reads the contents of the specified URL, saving the contents to filename and assigning filename to f.
	f = urlwrite('url', 'method', 'params') saves the contents of the specified URL to filename, passing information to the server as part of the request where method can be get or post, and params is a cell array of parameter-value pairs.
	[f, status] = urlwrite() catches any errors and returns the error code.
Examples	Save Content from Web Page Download the files submitted for Signal Processing, Communications, and DSP from MATLAB Central File Exchange, saving the results to samples. html in
	the MATLAB current directory.
	urlwrite('http://www.mathworks.com/matlabcentral/fileexchange /Category.jsp?type=category&id=1','samples.html');
	View the file in the Help browser.
	open('samples.html')
See Also	url read

usejava

Purpose	Determine if a Java feature is supported in MATLAB			
Syntax	usej ava(feature)			
Description	usej ava(feature) returns 1 if the specified feature is supported and 0 otherwise. Possible feature arguments are shown in the following table.			
	Feature	Description		
	'awt'	Abstract Window Toolkit components ¹ are available		
	' desktop'	The MATLAB interactive desktop is running		
	' j vm' The Java Virtual Machine is running			
	' swi ng' Swing components ² are available			
Examples	2. Java's lightwee The following co	mponents in the Abstract Window Tookit eight GUI components in the Java Foundation Classes nditional code ensures that the AWT's GUI components are the M-file attempts to display a Java Frame.		
	<pre>if usejava('awt') myFrame = java.awt.Frame; else disp('Unable to open a Java Frame'); end</pre>			
	The next example is part of an M-file that includes Java code. It fails gracefully when run in a MATLAB session that does not have access to a JVM.			
	if ~usejava error([m end	('jvm') filename ' requires Java to run.']);		
See Also	j avachk			

vander

Purpose	Vandermonde matrix				
Syntax	A = vander(v)				
Description	A = vander(v) returns the Vandermonde matrix whose columns are powers of the vector v, that is, $A(i,j) = v(i)^{(n-j)}$, where $n = length(v)$.				
Examples	vander(1:.5:	3)			
	ans =				
	1.0000	1.0000	1.0000	1.0000	1.0000
	5.0625	3. 3750	2.2500	1. 5000	1.0000
	16.0000	8.0000	4.0000	2.0000	1.0000
	39.0625	15. 6250	6.2500	2.5000	1.0000
	81.0000	27.0000	9.0000	3. 0000	1.0000
See Also	gallery				

Purpose	Variance
Syntax	var(X) var(X, 1) var(X, w)
Description	var(X) returns the variance of X for vectors. For matrices, $var(X)$ is a row vector containing the variance of each column of X. $var(X)$ normalizes by N-1 where N is the sequence length. This makes $var(X)$ the best unbiased estimate of the variance if X is a sample from a normal distribution. var(X, 1) normalizes by N and produces the second moment of the sample
	about its mean. var (X, W) computes the variance using the weight vector W. The number of elements in W must equal the number of rows in X unless W = 1, which is treated as a short-cut for a vector of ones. The elements of W must be positive. var normalizes W by dividing each element in W by the sum of all its elements. The variance is the argument of the standard deviation (CTD)
See Also	The variance is the square of the standard deviation (STD).

Purpose	Pass or return variable numbers of arguments
Syntax	<pre>function varargout = foo(n) function y = bar(varargin)</pre>
Description	function varargout = $foo(n)$ returns a variable number of arguments from function foo. m.
	function $y = bar(varargin)$ accepts a variable number of arguments into function bar. m.
	The varargi n and varargout statements are used only inside a function M-file to contain the optional arguments to the function. Each must be declared as the last argument to a function, collecting all the inputs or outputs from that point onwards. In the declaration, varargi n and varargout must be lowercase.
Examples	The function
	<pre>function myplot(x, varargin) plot(x, varargin{:})</pre>
	collects all the inputs starting with the second input into the variable varargin. myplot uses the comma-separated list syntax varargin{:} to pass the optional parameters to plot. The call
	<pre>myplot(sin(0:.1:1), 'color', [.5.7.3], 'linestyle', ':')</pre>
	results in varargi n being a 1-by-4 cell array containing the values $'\ col\ or'$, [.5 .7 .3], $'\ l\ i\ nestyl\ e'$, and $'\ :\ '$.
	The function
	<pre>function [s, varargout] = mysize(x) nout = max(nargout, 1) - 1; s = size(x); for k=1:nout, varargout(k) = {s(k)}; end</pre>
	returns the size vector and, optionally, individual sizes. So
	[s, rows, cols] = mysize(rand(4, 5));
	returns $s = [4 \ 5]$, rows = 4, col $s = 5$.

See Also nargin, nargout, nargchk, nargoutchk, i nputname

vectorize

Purpose	Vectorize expression
Syntax	<pre>vectorize(s) vectorize(fun)</pre>
Description	$vectorize(s)$ where s is a string expression, inserts a . before any $$ ^, * or / in $s.$ The result is a character string.
	vectorize(fun) when fun is an inline function object, vectorizes the formula for fun. The result is the vectorized version of the inline function.
See Also	inline, cd, dbtype, del ete, dir, partial path, path, what, who

ver

Purpose	Display version information for MATLAB, Simulink, and toolboxes
Graphical Interface	As an alternative to the ver function, select About from the Help menu in any product that has a Help menu.
Syntax	<pre>ver ver product v = ver('product')</pre>
Description	ver displays a header containing the current version number, license number, operating system, and Java VM version for MATLAB, followed by the version numbers for Simulink, if installed, and all other MathWorks products installed.
	ver product displays the MATLAB header information followed by the current version number for product. The name product corresponds to the directory name that holds the Contents. m file for that product. For example, Contents. m for the Control Systems Toolbox resides in the control directory. You therefore use ver control to obtain the version of this toolbox.
	$v\ =\ ver('\ product')\ returns$ the version information to structure array, v, having fields Name, Versi on, Rel ease, and Date.
Remarks	To use ver with your own product, the first two lines of the <code>Contents.m</code> file for the product must be of the form
	% Toolbox Description % Version xxx dd-mmm-yyyy
	Do not include any spaces in the date and use a two-character day; that is, use 02- Sep- 2002 instead of 2- Sep- 1997.
Examples	Return version information for the Control Systems Toolbox by typing ver control
	MATLAB returns
	- MATLAB Version 6.5.0.275711 (R13)

Return version information for the Control System Toolbox in a structure array, v.

```
v = ver('control')
v =
    Name: 'Control System Toolbox'
    Version: '5.2'
    Release: '(R13)'
    Date: '19-Aug-2002'
```

See Also help, hostid, license, version, whatsnew

Also, type help info at the Command Window prompt.

verctrl

Purpose	Version control operations on PC platforms
Graphical Interface	As an alternative to the verctrl function, use Source Contro l in the Editor, Simulink, or Stateflow File menu.
Syntax	<pre>fileChange = verctrl('command', {'filename1', 'filename2',}, winhandle) verctrl('command', {'filename1', 'filename2',}, winhandle) fileChange = verctrl('command', 'file', winhandle) verctrl('command', 'file', winhandle) list = verctrl('all_systems')</pre>
Description	Note To use the verctrl function with the winhandle argument, you must first create a window and get its handle. See "Examples" for instructions on how to do this.

fileChange=verctrl ('command', {'filename1', 'filename2',....}, winhandle) performs the version control specified by 'command' on a single file or multiple files. Specify files with a cell array using the full pathnames for 'filename'. These commands return a logical 1 to the workspace if the file has changed on disk or a logical 0 to the workspace if the file has not changed on disk. Available values for 'command' with this syntax are as follows:

command Argument	Purpose
'get'	Retrieves file(s) for viewing and compiling, but not editing. The file(s) will be tagged read-only. The list of files should contain either files or directories but not both.
'checkout'	Retrieves file(s) for editing.
' checki n'	Checks file(s) into the version control system, storing the changes and creating a new version.

command Argument	Purpose
' uncheckout '	Cancels a previous check-out operation and restores the contents of the selected file(s) to the precheckout version. All changes made to the file since the check-out are lost.
' add'	Adds file(s) into the version control system.
' hi story'	Displays the history of file(s).

verctrl (' command', {' fil ename1', ' fil ename2',}, wi nhandl e) performs the version control specified by ' command' on a single file or multiple files. Specify the files with a cell array using the full pathnames for ' fil ename'. Available values for ' command' with this syntax are as follows:

command argument	Purpose
'remove'	Removes file(s) from the version control system. It does not delete the file(s) from the local hard drive, only from the version control system.

fileChange = verctrl ('command', 'file', winhandle) performs the version control specified by 'command' on a single file. Use the full pathname for 'file'. These commands return a logical 1 to the workspace if the file has changed on disk or a logical 0 to the workspace if the file has not changed on disk. Available values for 'command' with this syntax are as follows:

command argument	Purpose
' properti es	Displays the properties of a file.
'isdiff'	Compares a file with the latest checked in version of the file in the version control system. Returns logical 1 to the workspace if the files are different and it returns logical 0 to the workspace if the files are identical.

<code>verctrl('command', 'file', winhandle)</code> performs the version control specified by 'command' on a single file. Use the full pathname for 'file'. Available values for 'command' with this syntax are as follows:

command argument	Purpose
' showdi ff'	Displays the differences between a file and the latest checked in version of the file in the version control system.

Examples This function supports different version control commands on PC platforms. You must make a window and get its handle prior to calling version control commands that use the winhandl e argument. A basic example for making a window and getting its handle is shown below.

Make a Java Window and Get Its Handle

```
import java.awt.*;
frame = Frame('Test frame');
frame.setVisible(1);
winhandle = com.mathworks.util.NativeJava.hWndFromComponent(frame)
```

winhandle =

919892

Return a List in the Command Window of All Version Control Systems Installed in the Machine

```
list = verctrl('all_systems')
list =
    'Microsoft Visual SourceSafe'
    'Jalindi Igloo'
    'PVCS Source Control'
    'ComponentSoftware RCS'
```

Check Out a File

Check out D: file1. ext from the version control system. This command opens 'checkout' window and returns a logical 1 to the workspace if the file has changed on disk or a logical 0 to the workspace if the file has not changed on disk.

```
fileChange = verctrl('checkout', {'D: \file1. ext'}, winhandle)
```

Add Files

Add D: file1. ext and D: file2. ext to the version control system. This command opens 'add' window and returns a logical 1 to the workspace if the file has changed on disk or a logical 0 to the workspace if the file has not changed on disk.

fileChange = verctrl('add', {'D: \file1. ext', 'D: \file2. ext'}, winhandle)

Display the Properties of a File

Display the properties of D: file1. ext. This command opens 'properties' window and returns a logical 1 to the workspace if the file has changed on disk or a logical 0 to the workspace if the file has not changed on disk.

fileChange = verctrl('properties', 'D: \file1.ext', winhandle)

See Also checkin, checkout, undocheckout, cmopts

Also, type help verctrl.mat the command window prompt.

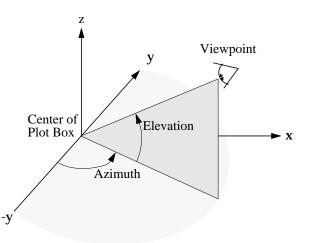
version

Purpose	Get MATLAB version number	
Graphical Interface	As an alternative to the versi on function, select About from the Help menu in the MATLAB desktop.	
Syntax	version version -java v = version [v,d] = version	
Description	versi on displays the MATLAB version number.	
	versi on <code>-j</code> ava displays the version of the Java VM used by MATLAB.	
	v = versi on returns a string v containing the MATLAB version number.	
	[v, d] = versi on also returns a string d containing the date of the version.	
Examples	[v, d]=version	
	v = 6. 5. 0. 179893 (R13)	
	d = Aug 2 2002	
See Also	ver, whatsnew	

vertcat

Purpose	Vertical concatenation	
Syntax	C = vertcat(A1, A2,)	
Description	C = vertcat(A1, A2,) vertically concatenates matrices A1, A2, and so on. All matrices in the argument list must have the same number of columns. vertcat concatenates N-dimensional arrays along the first dimension. The remaining dimensions must match. MATLAB calls C = vertcat(A1, A2,) for the syntax C = [A1; A2;] when any of A1, A2, etc. is an object.	
Examples	Create a 5-by-3 matrix, A, and a 3-by-3 matrix, B. Then vertically concatenate A and B.	
	A = magic(5); % Create 5-by-3 matrix, A A(:,4:5) = []	
	A =	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	B = magic(3)*100% Create 3-by-3 matrix, B	
	B =	
	800100600300500700400900200	
	C = vertcat(A, B) % Vertically concatenate A and B	
	C =	

17	24	1
23	5	7
4	6	13
10	12	19
11	18	25
800	100	600
300	500	700
400	900	200


See Also

horzcat, cat

Purpose	Viewpoint specification
Syntax	<pre>view(az, el) view([az, el]) view([x, y, z]) view(2) view(3) view(T) [az, el] = view T = view</pre>
Description	The position of the viewer (the viewpoint) determines the orientation of the axes. You specify the viewpoint in terms of azimuth and elevation, or by a point in three-dimensional space. vi ew(az, el) and vi ew([az, el]) set the viewing angle for a three-dimensional plot. The azimuth, az, is the horizontal rotation about the z-axis as measured in degrees from the negative y-axis. Positive values indicate counterclockwise rotation of the viewpoint. el is the vertical elevation of the viewpoint in degrees. Positive values of elevation correspond to moving above the object; negative values correspond to moving below the object. vi ew([x, y, z]) sets the viewpoint to the Cartesian coordinates x, y, and z. The magnitude of (x, y, z) is ignored. vi ew(2) sets the default two-dimensional view, az = 0, el = 90. vi ew(3) sets the default three-dimensional view, az = -37. 5, el = 30. vi ew(T) sets the view according to the transformation matrix T, which is a 4-by-4 matrix such as a perspective transformation generated by vi ewmt x. [az, el] = vi ew returns the current azimuth and elevation. T = vi ew returns the current 4-by-4 transformation matrix.

Remarks Azimuth is a polar angle in the *x-y* plane, with positive angles indicating counterclockwise rotation of the viewpoint. Elevation is the angle above (positive angle) or below (negative angle) the *x-y* plane.

This diagram illustrates the coordinate system. The arrows indicate positive directions.

Examples

View the object from directly overhead.

az = 0; el = 90; view(az, el);

Set the view along the *y*-axis, with the *x*-axis extending horizontally and the *z*-axis extending vertically in the figure.

view([0 0]);

Rotate the view about the *z*-axis by 180°.

az = 180; el = 90; view(az, el);

See Also viewmtx, axes, rotate3d

"Controlling the Camera Viewpoint" for related functions

axes graphics object properties: CameraPosition, CameraTarget, CameraViewAngle, Projection.

Defining the View for more information on viewing concepts and techniques

viewmtx

Purpose	View transformation matrices
Syntax	T = vi ewmtx(az, el) T = vi ewmtx(az, el, phi) T = vi ewmtx(az, el, phi, xc)
Description	vi ewmtx computes a 4-by-4 orthographic or perspective transformation matrix that projects four-dimensional homogeneous vectors onto a two-dimensional view surface (e.g., your computer screen).
	T = vi ewmtx(az, el) returns an <i>orthographic</i> transformation matrix corresponding to azimuth az and elevation el. az is the azimuth (i.e., horizontal rotation) of the viewpoint in degrees. el is the elevation of the viewpoint in degrees. This returns the same matrix as the commands
	view(az,el) T = view

but does not change the current view.

 $T=vi\,ewmtx(az,\,el\,,\,phi\,)\,$ returns a *perspective* transformation matrix. phi is the perspective viewing angle in degrees. phi is the subtended view angle of the normalized plot cube (in degrees) and controls the amount of perspective distortion.

Phi	Description
0 degrees	Orthographic projection
10 degrees	Similar to telephoto lens
25 degrees	Similar to normal lens
60 degrees	Similar to wide angle lens

You can use the matrix returned to set the view transformation with view(T). The 4-by-4 perspective transformation matrix transforms four-dimensional homogeneous vectors into unnormalized vectors of the form (x,y,z,w), where *w* is not equal to 1. The *x*- and *y*-components of the normalized vector (x/w, y/w, z/w, 1) are the desired two-dimensional components (see example below).

specify the point as a three-element vector, $xc = [xc, yc, zc]$, in the interval $[0,1]$. The default value is $xc = [0, 0, 0]$. Remarks A four-dimensional homogenous vector is formed by appending a 1 to the corresponding three-dimensional vector. For example, $[x, y, z, 1]$ is the four-dimensional vector corresponding to the three-dimensional point $[x, y, z]$. Examples Determine the projected two-dimensional vector corresponding to the three-dimensional point $(0.5, 0.0, -3.0)$ using the default view direction. Note that the point is a column vector.A = vi ewmtx(-37.5, 30); x4d = $[.5 \ 0 \ -3 \ 1]'$; x2d = $A*x4d$; x2d = $x2d(1:2)$		T = vi ewmtx(az, el, phi, xc) returns the perspective transformation matrix using xc as the target point within the normalized plot cube (i.e., the camera is looking at the point xc). xc is the target point that is the center of the view. You
Examples Determine the projected two-dimensional vector corresponding to the three-dimensional point $[x, y, z]$. Examples Determine the projected two-dimensional vector corresponding to the three-dimensional point $(0.5, 0.0, -3.0)$ using the default view direction. Note that the point is a column vector.A = vi ewmtx(-37.5, 30); x4d = $[.5 \ 0 \ -3 \ 1]';$ x2d = A*x4d; x2d = x2d(1:2)		specify the point as a three-element vector, $xc = [xc, yc, zc]$, in the interval
<pre>three-dimensional point (0.5,0.0,- 3.0) using the default view direction. Note that the point is a column vector.</pre>	Remarks	corresponding three-dimensional vector. For example, $[x, y, z, 1]$ is the
x4d = [.5 0 -3 1]'; x2d = A*x4d; x2d = x2d(1:2)	Examples	three-dimensional point (0.5,0.0,-3.0) using the default view direction. Note
x2d = A*x4d; x2d = x2d(1:2)		A = vi ewmtx(-37.5, 30);
x2d = x2d(1:2)		$x4d = [.5 \ 0 \ -3 \ 1]';$
		$\mathbf{x2d} = \mathbf{A} \ast \mathbf{x4d};$
$x^{2}d =$		
0.2067		x2d =

0. 3967 - 2. 4459

Vectors that trace the edges of a unit cube are

x = [0]	1	1	0	0	0	1	1	0	0	1	1	1	1	0	0];
y = [0	0	1	1	0	0	0	1	1	0	0	0	1	1	1	1];
z = [0]	0	0	0	0	1	1	1	1	1	1	0	0	1	1	0];

Transform the points in these vectors to the screen, then plot the object.

A = viewmtx(-37.5,30); [m, n] = size(x); x4d = [x(:), y(:), z(:), ones(m*n, 1)]'; x2d = A*x4d; x2 = zeros(m, n); y2 = zeros(m, n); x2(:) = x2d(1,:); y2(:) = x2d(2,:);

pl ot (x2, y2)

Use a perspective transformation with a 25 degree viewing angle:

0

0.2

0.4

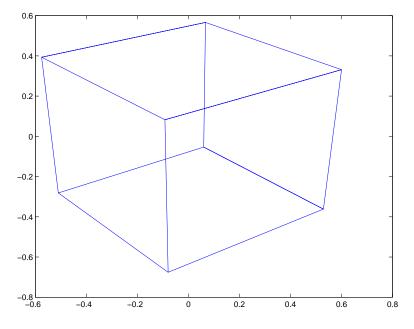
0.6

0.8

A = vi ewmt x(-37. 5, 30, 25); x4d = $[.5 \ 0 \ -3 \ 1]';$ x2d = A*x4d; x2d = x2d(1:2)/x2d(4) % Normal i ze x2d = 0. 1777 -1. 8858

-0.2

-0.6

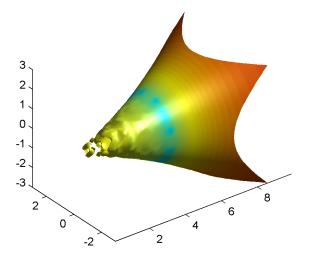

-0.4

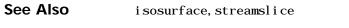
Transform the cube vectors to the screen and plot the object:

```
A = viewmtx(-37.5, 30, 25);
[m, n] = size(x);
x4d = [x(:), y(:), z(:), ones(m*n, 1)]';
x2d = A*x4d;
x2 = zeros(m, n); y2 = zeros(m, n);
x2(:) = x2d(1,:)./x2d(4,:);
y2(:) = x2d(2,:)./x2d(4,:);
```

viewmtx

pl ot (x2, y2)



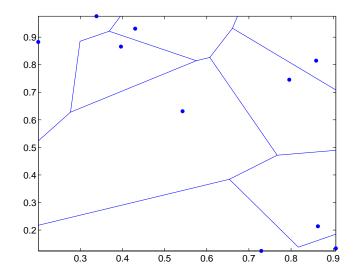

"Controlling the Camera Viewpoint" for related functions Defining the View for more information on viewing concepts and techniques

volumebounds

Purpose	Returns coordinate and color limits for volume data
Syntax	<pre>lims = volumebounds(X, Y, Z, V) lims = volumebounds(X, Y, Z, U, V, W) lims = volumebounds(V), lims = volumebounds(U, V, W)</pre>
Description	<pre>lims = volumebounds(X, Y, Z, V) returns the x,y,z and color limits of the current axes for scalar data. lims is returned as a vector: [xmin xmax ymin ymax zmin zmax cmin cmax]</pre>
	You can pass this vector to the axis command.
	lims = volumebounds(X, Y, Z, U, V, W) returns the x, y, and z limits of the current axes for vector data. $lims$ is returned as a vector:
	[xmin xmax ymin ymax zmin zmax]
	lims = volumebounds(V), lims = volumebounds(U, V, W) assumes X, Y, and Z are determined by the expression:
	[X Y Z] = meshgrid(1:n, 1:m, 1:p)
	where $[m n p] = si ze(V)$.
Examples	This example uses vol umebounds to set the axis and color limits for an i sosurface generated by the flow function.
	<pre>[x y z v] = flow; p = patch(isosurface(x, y, z, v, -3)); isonormals(x, y, z, v, p) daspect([1 1 1]) isocolors(x, y, z, flipdim(v, 2), p) shading interp axis(volumebounds(x, y, z, v)) view(3) camlight lighting phong</pre>

volumebounds

"Volume Visualization" for related functions

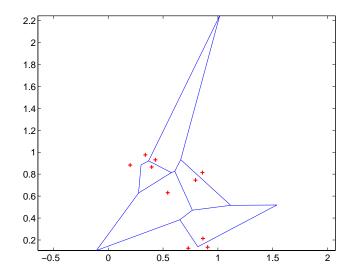

voronoi

Purpose	Voronoi diagram
Syntax	<pre>voronoi (x, y) voronoi (x, y, TRI) voronoi (, 'Li neSpec') h = voronoi () [vx, vy] = voronoi ()</pre>
Definition	Consider a set of coplanar points P . For each point P_x in the set P , you can draw a boundary enclosing all the intermediate points lying closer to P_x than to other points in the set P . Such a boundary is called a <i>Voronoi polygon</i> , and the set of all Voronoi polygons for a given point set is called a <i>Voronoi diagram</i> .
Description	voronoi (x, y) plots the bounded cells of the Voronoi diagram for the points x,y. Cells that contain a point at infinity are unbounded and are not plotted.
	voronoi (x, y, TRI) uses the triangulation TRI instead of computing it via del aunay.
	voronoi $(\ldots,$ ' Li <code>neSpec'</code>) plots the diagram with color and line style specified.
	h = voronoi() returns, in h, handles to the line objects created.
	[vx, vy] = voronoi() returns the finite vertices of the Voronoi edges in vx and vy so that pl ot (vx, vy, '-', x, y, '.') creates the Voronoi diagram.
	Note For the topology of the Voronoi diagram, i.e., the vertices for each Voronoi cell, use voronoi n.
	[v, c] = voronoi n([x(:) y(:)])
Visualization	Use one of these methods to plot a Voronoi diagram:If you provide no output argument, voronoi plots the diagram. See
	Example 1.

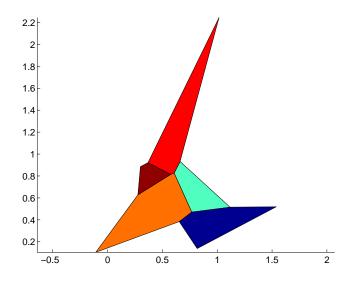
- To gain more control over color, line style, and other figure properties, use the syntax [vx, vy] = voronoi (...). This syntax returns the vertices of the finite Voronoi edges, which you can then plot with the plot function. See Example 2.
- To fill the cells with color, use voronoi n with n = 2 to get the indices of each cell, and then use patch and other plot functions to generate the figure. Note that patch does not fill unbounded cells with color. See Example 3.

Examples Example 1. This code uses the voronoi function to plot the Voronoi diagram for 10 randomly generated points.

rand('state', 5); x = rand(1, 10); y = rand(1, 10); voronoi (x, y)


Example 2. This code uses the vertices of the finiteVoronoi edges to plot the Voronoi diagram for the same 10 points.

```
rand('state', 5);
x = rand(1, 10); y = rand(1, 10);
[vx, vy] = voronoi(x, y);
```


```
plot(x, y, 'r+', vx, vy, 'b-'); axis equal
```

Note that you can add this code to get the figure shown in Example 1.

```
xlim([min(x) max(x)])
ylim([min(y) max(y)])
```


Example 3. This code uses voronoi n and patch to fill the bounded cells of the same Voronoi diagram with color.

Algorithm	If you supply no triangulation TRI, the voronoi function performs a Delaunay triangulation of the data that uses Qhull [2]. This triangulation uses the Qhull joggle option ('QJ'). For information about Qhull, see http://www.geom.umn.edu/software/qhull/. For copyright information, see http://www.geom.umn.edu/software/download/COPYING.html.
See Also	convhul l, del aunay, Li neSpec, pl ot, voronoi n
Reference	[1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, "The Quickhull Algorithm for Convex Hulls," <i>ACM Transactions on Mathematical Software</i> , Vol. 22, No. 4, Dec. 1996, p. 469-483. Available in HTML format at http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-bar ber/ and in PostScript format at ftp://geom.umn.edu/pub/software/qhull-96.ps.
	[2] National Science and Technology Research Center for Computation and Visualization of Geometric Structures (The Geometry Center), University of Minnesota. 1993.

voronoin

Purpose	n-D Voronoi diagram
Syntax	[V, C] = voronoin(X)
Description	[V, C] = voronoi n(X) returns Voronoi vertices V and the Voronoi cells C of the Voronoi diagram of X. V is a numv-by-n array of the numv Voronoi vertices in n-D space, each row corresponds to a Voronoi vertex. C is a vector cell array where each element contains the indices into V of the vertices of the corresponding Voronoi cell. X is an m-by-n array, representing m n-D points, where $n > 1$ and $m >= n+1$.
	The first row of V is a point at infinity. If any index in a cell of the cell array is 1, then the corresponding Voronoi cell contains the first point in V, a point at infinity. This means the Voronoi cell is unbounded.
Visualization	You can plot individual bounded cells of an n-D Voronoi diagram. To do this, use convhulln to compute the vertices of the facets that make up the Voronoi cell. Then use patch and other plot functions to generate the figure. For an example, see "Tessellation and Interpolation of Scattered Data in Higher Dimensions" in the MATLAB documentation.
Examples	Let
	x = [0.5 0]
	$\begin{array}{cccc} 0 & 0.5 \\ -0.5 & -0.5 \end{array}$
	-0.2 -0.1
	-0.1 0.1
	0.1 - 0.1
	0.1 0.1]
	then
	[V, C] = voronoi n(x)
	V =
	Inf Inf
	0. 3833 0. 3833
	0. 7000 - 1. 6500
	0. 2875 0. 0000 - 0. 0000 0. 2875
	0.0000 0.2010

- 0. 0000	- 0. 0000
- 0. 0500	-0.5250
- 0. 0500	- 0. 0500
- 1. 7500	0.7500
- 1. 4500	0.6500

C =

[1x4	double]
[1x5	doubl e]
[1x4	doubl e]
[1x4	doubl e]
[1x4	doubl e]
[1x5	doubl e]
[1x4	doubl e]

Use a for loop to see the contents of the cell array C.

for i=1:length(C), $disp(C{i})$, end

4	2	1	3	
10	5	2	1	9
9	1	3	7	
10	8	7	9	
10	5	6	8	
8	6	4	3	7
6	4	2	5	

In particular, the fifth Voronoi cell consists of 4 points: $V(10,\,:\,)$, $V(5,\,:\,)$, $V(6,\,:\,)$, $V(8,\,:\,)$.

Algorithm	voronoi n is based on Qhull [2]. It uses the Qhull joggle option ('QJ'). For information about qhull, see http://www.geom.umn.edu/software/qhull/. For copyright information, see
See Also	http://www.geom.umn.edu/software/download/COPYING.html.
Reference	convhull, convhulln, del aunay, del aunayn, voronoi [1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, "The Quickhull Algorithm for
Kererende	Convex Hulls," <i>ACM Transactions on Mathematical Software</i> , Vol. 22, No. 4, Dec. 1996, p. 469-483. Available in HTML format at

http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-bar ber/ and in PostScript format at ftp://geom.umn.edu/pub/software/qhull-96.ps.

[2] National Science and Technology Research Center for Computation and Visualization of Geometric Structures (The Geometry Center), University of Minnesota. 1993.

Purpose	Wait until a timer stops running
Syntax	wait(obj)
Description	wai t (obj) blocks the MATLAB command line and waits until the timer, represented by the timer object obj, stops running. When a timer stops running, the value of the timer object's Runni ng property changes from ' on' to ' off'.
	If obj is an array of timer objects, wait blocks the MATLAB command line until all the timers have stopped running.
	If the timer is not running, wait returns immediately.
See Also	timer, start, stop

waitbar

Purpose	Display waitbar
Syntax	<pre>h = waitbar(x, 'title') waitbar(x, 'title', 'CreateCancelBtn', 'button_callback') waitbar(, property_name, property_value,) waitbar(x) waitbar(x, h) waitbar(x, h, 'updated title')</pre>
Description	A waitbar shows what percentage of a calculation is complete, as the calculation proceeds. h = waitbar(x, 'title') displays a waitbar of fractional length x. The handle to the waitbar figure is returned in h. x must be between 0 and 1.
	wai tbar(x, 'title', ' CreateCancelBtn ', 'button_callback') specifying CreateCancelBtn adds a cancel button to the figure that executes the MATLAB commands specified in button_callback when the user clicks the cancel button or the close figure button. wai tbar sets both the cancel button callback and the figure CloseRequestFcn to the string specified in button_callback.
	waitbar(, property_name, property_value,) optional arguments property_name and property_value enable you to set corresponding waitbar figure properties.
	waitbar(x) subsequent calls to waitbar(x) extend the length of the bar to the new position x .
	wai tbar (x,h) extends the length of the bar in the waitbar h to the new position $x.$
Example	wai tbar is typically used inside a for loop that performs a lengthy computation. For example,
	<pre>h = waitbar(0, 'Please wait');</pre>
	for i=1:100, % computation here % waitbar(i/100) end

close(h)

See Also "Predefined Dialog Boxes" for related functions

waitfor

Purpose	Wait for condition before resuming execution
Syntax	waitfor(h) waitfor(h, 'PropertyName') waitfor(h, 'PropertyName', PropertyValue)
Description	The waitfor function blocks the caller's execution stream so that command-line expressions, callbacks, and statements in the blocked M-file do not execute until a specified condition is satisfied.
	waitfor(h) returns when the graphics object identified by h is deleted or when a Ctrl-C is typed in the Command Window. If h does not exist, waitfor returns immediately without processing any events.
	waitfor(h, 'PropertyName'), in addition to the conditions in the previous syntax, returns when the value of 'PropertyName' for the graphics object h changes. If 'PropertyName' is not a valid property for the object, waitfor returns immediately without processing any events.
	waitfor(h, 'PropertyName', PropertyValue), in addition to the conditions in the previous syntax, waitfor returns when the value of 'PropertyName' for the graphics object h changes to PropertyValue. waitfor returns immediately without processing any events if 'PropertyName' is set to PropertyValue.
Remarks	While waitfor blocks an execution stream, other execution streams in the form of callbacks may execute as a result of various events (e.g., pressing a mouse button).
	wai tfor can block nested execution streams. For example, a callback invoked during a wai tfor statement can itself invoke wai tfor.
See Also	ui resume, ui wai t "Interactive User Input" for related functions

Purpose	Wait for key or mouse button press
Syntax	k = waitforbuttonpress
Description	k = waitforbuttonpress blocks the caller's execution stream until the function detects that the user has pressed a mouse button or a key while the figure window is active. The function returns
	• 0 if it detects a mouse button press
	• 1 if it detects a key press
	Additional information about the event that causes execution to resume is available through the figure's CurrentCharacter, Sel ecti onType, and CurrentPoi nt properties.
	If a WindowButtonDownFcn is defined for the figure, its callback is executed before waitforbuttonpress returns a value.
Example	These statements display text in the Command Window when the user either clicks a mouse button or types a key in the figure window:
	<pre>w = waitforbuttonpress; if w == 0</pre>
	disp('Button press')
	el se
	disp('Key press') end
See Also	dragrect, ginput, rbbox, waitfor
	"Developing User Interfaces" for related functions

warndlg

Purpose	Display warning dialog box
Syntax	h = warndl g('warningstring', 'dl gname')
Description	warndlg displays a dialog box named 'Warning Dialog' containing the string 'This is the default warning string.' The warning dialog box disappears after you press the OK button.
	warndl g(' warni ngstri ng') displays a dialog box with the title ' Warni ng Di al og' containing the string specified by warni ngstri ng.
	warndl g('warni ngstri ng', 'dl gname') displays a dialog box with the title dl gname that contains the string warni ngstri ng.
	h = warndl g() returns the handle of the dialog box.
Examples	The statement
	warndlg('Pressing OK will clear memory','!! Warning !!')
	displays this dialog box:
	Pressing DK will clear memory OK

See Alsodi al og, errordl g, hel pdl g, msgbox"Predefined Dialog Boxes" for related functions

Purpose	Display warning message
Syntax	<pre>warning('message') warning('message', a1, a2,) warning('message_id', 'message') warning('message_id', 'message', a1, a2,, an) s = warning('state', 'message_id') s = warning('state', 'mode')</pre>
Description	<pre>warni ng(' message') displays the text ' message' like the di sp function, except that with warni ng, message display can be suppressed. warni ng(' message', a1, a2,) displays a message string that contains formatting conversion characters, such as those used with the MATLAB spri ntf function. Each conversion character in message is converted to one of the values a1, a2, in the argument list. Note MATLAB converts special characters (like \n and %d) in the error message string only when you specify more than one input argument with error. See Example 4 below. warni ng(' message_i d', ' message') attaches a unique identifier, or message_i d, to the warning message. The identifier enables you to single out certain warnings during the execution of your program, controlling what happens when the warnings are encountered. See "Message Identifiers" and "Warning Control" in the MATLAB documentation for more information on the message_i d argument and how to use it. warni ng(' message_i d', ' message', a1, a2,, an) includes formatting conversion characters in message, and the character translations in arguments, a1, a2,, an. s = warni ng(state, 'message_i d') is a warning control statement that enables you to indicate how you want MATLAB to act on certain warnings. The state argument can be ' on', ' off', or ' query'. The message_i d argument can</pre>

be a message identifier string, ' al l ' , or ' l ast' . See "Control Statements" in the MATLAB documentation for more information.

Output s is a structure array that indicates the current state of the selected warnings. The structure has the fields i dentifier and state. See "Output from Control Statements" in the MATLAB documentation for more.

s = warning(state, mode) is a warning control statement that enables you to either enter debug mode, display an M-stack trace, or display more information with each warning. The state argument can be ' on', ' off', or ' query'. The mode argument can be ' debug', ' backtrace', or ' verbose'. See "Debug, Backtrace, and Verbose" in the MATLAB documentation for more information.

Examples

Example 1

Generate a warning that displays a simple string:

```
if ~ischar(p1)
    warning('Input must be a string')
end
```

Example 2

Generate a warning string that is defined at run-time. The first argument defines a message identifier for this warning:

Example 3

Using a message identifier, enable just the actionNotTaken warning from Simulink by first turning off all warnings and then setting just that warning to on:

```
warning off all
warning on Simulink:actionNotTaken
```

Use query to determine the current state of all warnings. It reports that you have set all warnings to off with the exception of Si mul i nk: acti onNotTaken:

```
warning query all
The default warning state is 'off'. Warnings not set to the
default are
```

State Warning Identifier

on Simulink: actionNotTaken

Example 4

MATLAB converts special characters (like \n and %d) in the warning message string only when you specify more than one input argument with warning. In the single argument case shown below, \n is taken to mean backsl ash-n. It is not converted to a newline character:

```
warning('In this case, the newline \n is not converted.') ??? In this case, the newline \n is not converted.
```

But, when more than one argument is specified, MATLAB does convert special characters. This is true regardless of whether the additional argument supplies conversion values or is a message identifier:

```
Warning('WarnTests: convertTest', ...
    'In this case, the newline \n is converted.')
??? In this case, the newline
    is converted.
```

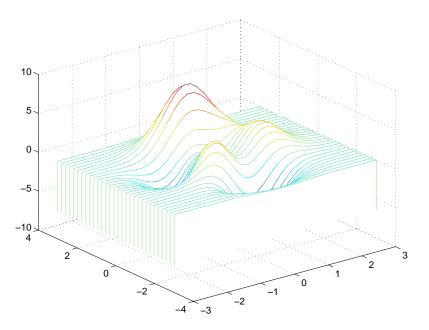
Example 5

To enter debug mode whenever a parameterNotSymmetric warning is invoked in a component called Control, first turn off all warnings and enable only this one type of warning using its message identifier. Then turn on debug mode for all enabled warnings. When you run your program, MATLAB will stop in debug mode just before this warning is executed. You will see the debug prompt (K>>) displayed:

```
warning off all
warning on Control:parameterNotSymmetric
warning on debug
```

Example 6

Turn on one particular warning, saving the previous state of this one warning in s. Remember that this nonquery syntax performs an implicit query prior to setting the new state:


```
s = warning('on', 'Control:parameterNotSymmetric');
```

warning

	After doing some work that includes making changes to the state of some warnings, restore the original state of all warnings:
	warni ng(s)
See Also	l astwarn, warndl g, error, l asterr, errordl g, dbstop, di sp, spri ntf

Purpose	Waterfall plot
Syntax	<pre>waterfall(Z) waterfall(X, Y, Z) waterfall(, C) h = waterfall()</pre>
Description	The waterfall function draws a mesh similar to the meshz function, but it does not generate lines from the columns of the matrices. This produces a "waterfall" effect.
	waterfall (Z) creates a waterfall plot using $x = 1$: si $ze(Z, 1)$ and $y = 1$: si $ze(Z, 1)$. Z determines the color, so color is proportional to surface height.
	waterfall (X, Y, Z) creates a waterfall plot using the values specified in X, Y, and Z. Z also determines the color, so color is proportional to the surface height. If X and Y are vectors, X corresponds to the columns of Z, and Y corresponds to the rows, where $l ength(x) = n$, $l ength(y) = m$, and $[m, n] = si ze(Z)$. X and Y are vectors or matrices that define the x and y coordinates of the plot. Z is a matrix that defines the z coordinates of the plot (i.e., height above a plane). If C is omitted, color is proportional to Z.
	waterfall(, C) uses scaled color values to obtain colors from the current colormap. Color scaling is determined by the range of C, which must be the same size as Z. MATLAB performs a linear transformation on C to obtain colors from the current colormap.
	$h = waterfall(\ldots)$ returns the handle of the patch graphics object used to draw the plot.
Remarks	For column-oriented data analysis, use ${\tt waterfall}(Z')$ or ${\tt waterfall}(X',Y',Z')$.
Examples	Produce a waterfall plot of the peaks function. [X, Y, Z] = peaks(30);

waterfall(X,Y,Z)

Algorithm The range of X, Y, and Z, or the current setting of the axes Ll i m, YLi m, and ZLi m properties, determines the range of the axes (also set by axi s). The range of C, or the current setting of the axes Cl i m property, determines the color scaling (also set by caxi s).

The CData property for the patch graphics objects specifies the color at every point along the edge of the patch, which determines the color of the lines.

The waterfall plot looks like a mesh surface; however, it is a patch graphics object. To create a surface plot similar to waterfall, use the meshz function and set the MeshStyle property of the surface to 'Row'. For a discussion of parametric surfaces and related color properties, see surf.

See Also axes, axi s, caxi s, meshz, ri bbon, surf Properties for patch graphics objects.

Purpose	Play recorded sound on a PC-based audio output device.		
Syntax	<pre>wavpl ay(y, Fs) wavpl ay(, ' mode')</pre>		
Description	wavpl $ay(y, Fs)$ plays the audio signal stored in the vector y on a PC-based audio output device. You specify the audio signal sampling rate with the integer Fs in samples per second. The default value for Fs is 11025 Hz (samples per second). wavpl ay supports only 1- or 2-channel (mono or stereo) audio signals.		
	wavpl ay(, 'mode') specifies how wavpl ay interacts with the command lir according the string 'mode'. The string 'mode' can be:		
	• 'async' (default value): You have immediate access to the command line as soon as the sound begins to play on the audio output device (a nonblocking device call).		
	• ' sync' : You don't have access to the command line until the sound has finished playing (a blocking device call).		
	The audio signal y can be one of four data types. The number of bits used to quantize and play back each sample depends on the data type.		
	Table 2-1: Data Types for wavplay		
	Data Type Quantization		
	Double-precision (default value)	16 bits/sample	
	Single-precision	16 bits/sample	
	16-bit signed integer	16 bits/sample	
	8-bit unsigned integer	8 bits/sample	
Remarks	You can play your signal in stereo if y is a two-column matrix.		
Examples	sampling frequency Fs. Load and pla	nat both contain an audio signal y, and a y the gong and the chirp audio signals. between 1 oad commands and play them for wavpl ay.	

load chirp; y1 = y; Fs1 = Fs; load gong; wavplay(y1,Fs1,'sync') % The chirp signal finishes before the wavplay(y,Fs) % gong signal begins playing.

Purpose	Read Microsoft WAVE (. wav) sound file
Graphical Interface	As an alternative to auread, use the Import Wizard. To activate the Import Wizard, select Import Data from the File menu.
Syntax	<pre>y = wavread('filename') [y,Fs,bits] = wavread('filename') [] = wavread('filename',N) [] = wavread('filename',[N1 N2]) [] = wavread('filename','size')</pre>
Description	wavread supports multi-channel data, with up to 32 bits per sample and supports reading 24- and 32-bit . wav files.
	y = wavread('filename') loads a WAVE file specified by the string filename, returning the sampled data in y. The . wav extension is appended if no extension is given. Amplitude values are in the range [-1, +1].
	[y, Fs, bits] = wavread('filename') returns the sample rate (Fs) in Hertz and the number of bits per sample (bits) used to encode the data in the file.
	$[\dots]$ = wavread('filename', N) returns only the first N samples from each channel in the file.
	$[\dots]$ = wavread('filename', [N1 N2]) returns only samples N1 through N2 from each channel in the file.
	siz = wavread('filename', 'size') returns the size of the audio data contained in the file in place of the actual audio data, returning the vector siz = [samples channels].
See Also	auread, wavwrite

wavrecord

Purpose	Record sound using a PC-based audio input device.
Syntax	<pre>y = wavrecord(n, Fs) y = wavrecord(, ch) y = wavrecord(, ' dtype')</pre>
Description	y = wavrecord(n, Fs) records n samples of an audio signal, sampled at a rate of Fs Hz (samples per second). The default value for Fs is 11025 Hz.
	y = wavrecord(, ch) uses ch number of input channels from the audio device. ch can be either 1 or 2, for mono or stereo, respectively. The default value for ch is 1.
	y = wavrecord(, ' $dtype$ ') uses the data type specified by the string ' $dtype$ ' to record the sound. The string ' $dtype$ ' can be one of the following:
	 'doubl e' (default value), 16 bits/sample 'si ngl e', 16 bits/sample 'i nt 16', 16 bits/sample 'ui nt 8', 8 bits/sample
Remarks	Standard sampling rates for PC-based audio hardware are 8000, 11025, 2250, and 44100 samples per second. Stereo signals are returned as two-column matrices. The first column of a stereo audio matrix corresponds to the left input channel, while the second column corresponds to the right input channel.
Examples	Record 5 seconds of 16-bit audio sampled at 11,025 Hz. Play back the recorded sound using wavpl ay. Speak into your audio device (or produce your audio signal) while the wavrecord command runs.
	<pre>Fs = 11025; y = wavrecord(5*Fs, Fs, 'int16'); wavplay(y, Fs);</pre>
See Also	wavpl ay

Purpose	Write Microsoft WAVE (. wav) sound file
Syntax	<pre>wavwrite(y, 'filename') wavwrite(y, Fs, 'filename') wavwrite(y, Fs, N, 'filename')</pre>
Description	<pre>wavwrite supports multi-channel WAVE data, with up 32 bits per sample and supports writing 24- and 32-bit . wav files. wavwrite(y,' filename') writes a WAVE file specified by the string filename. The data should be arranged with one channel per column. Amplitude values</pre>
	<pre>outside the range [-1, +1] are clipped prior to writing. wavwrite(y, Fs, 'filename') specifies the sample rate Fs, in Hertz, of the data. wavwrite(y, Fs, N, 'filename') forces an N-bit file format to be written, where</pre>
See Also	N <= 32. auwrite, wavread

web

Purpose	Point Help browser or Web browser to file or Web site
Graphical Interface	As an alternative to the web function, type the URL in the page title field at the top of the display pane in the Help browser.
Syntax	<pre>web url web url - browser stat = web('url', '-browser')</pre>
Description	web url displays the MATLAB Help browser, loads the file or Web site specified by url (the URL) in it, and returns the status to the Command Window. Generally, url specifies a local file, for example an HTML file, or a Web site on the Internet.
	web url - browser displays the default Web browser for your system, loads the file or Web site specified by url (the URL) in it, and returns the status to the Command Window. Generally, url specifies a local file or a Web site on the Internet. The URL can be in any form that the browser supports. On Windows, the default Web browser is determined by the operating system. On UNIX, the Web browser used is specified in docopt, in the doccmd string. If your system default browser is Netscape, start Netscape before issuing the web function with the - browser argument to avoid possible problems.

stat = web('url', '-browser') is the function form and returns the status of web to the variable stat.

Value of stat	Description
0	Browser was found and launched.
1	Browser was not found.
2	Browser was found but could not be launched.

Examples

web file: /di sk/di r1/di r2/foo. html points the Help browser to the file foo. html . If the file is on the MATLAB path, web(['file:' which('foo. html')]) also works.

	web http://www.mathworks.comloads The MathWorks Web page into the Help browser.
	web www. mathworks. com -browser loads The MathWorks Web page into your system's default Web browser, for example, Netscape Navigator.
	Use web mailto: email_address to use your default e-mail application to send a message to email_address.
See Also	doc, docopt, hel pbrowser

weekday

Purpose	Day of the week				
Syntax	[N, S] = weekday(D)				
Description	[N, S] = weekday(D) returns the day of the week in numeric (N) and string (S) form for each element of a serial date number array or date string. The days of the week are assigned these numbers and abbreviations:				
	Ν	S	Ν	S	
	1	Sun	5	Thu	
	2	Mon	6	Fri	
	3	Tue	7	Sat	
	4	Wed			
Examples	les Either [n, s] = weekday(728647)				
	or				
	[n, s] = weekday('19-Dec-1994')				
	retu	rns n = 2 and s = Mon.			
See Also	datenum, datevec, eomday				

Purpose	List MATLAB specific files in current directory		
Graphical Interface	As an alternative to the what function, use the Current Directory browser. To open it, select Current Directory from the View menu in the MATLAB desktop.		
Syntax	what what dirname what class s = what('dirname')		
Description	what lists the M, MAT, MEX, MDL, and P-files and the class directories that reside in the current working directory.		
	what dirname lists the files in directory dirname on the MATLAB search path. It is not necessary to enter the full pathname of the directory. The last component, or last two components, is sufficient.		
	what class lists the files in method directory, @class. For example, what cfit lists the MATLAB files in tool box/curvefit/curvefit/@cfit.		
	${\bf s}~=~{\rm what}('{\rm di}rname')$ returns the results in a structure array with these fields.		
	Field	Description	
	path	Path to directory	
	m	Cell array of M-file names	
	mat	Cell array of MAT-file names	
	mex	Cell array of MEX-file names	
	mdl	Cell array of MDL-file names	
	р	Cell array of P-file names	

Cell array of class names

cl asses

Examples List the files in tool box/matl ab/audi o: what audio M-files in directory matlabroot/toolbox/matlab/audio Contents auread soundsc audi odevi nfo auwrite wavpl ay audi opl ayer lin2mu wavread audi opl ayerreg mu2lin wavrecord audi orecorder prefspanel wavwrite audi orecorderreg saxi s audi ouni quename sound MAT-files in directory matlabroot/toolbox/matlab/audio chi rp handel spl at laughter gong train Obtain a structure array containing the MATLAB filenames in tool box/ matlab/general. s = what('general') s = path: 'matlabroot: \tool box\matlab\general ' m: {104x1 cell} mat: {0x1 cell} mex: {5x1 cell} $mdl: \{0x1 cell\}$ p: { ' hel pwi n. p' } classes: {'char'} See Also dir, exist, lookfor, path, which, who

whatsnew

Purpose	Display Release Notes in Help browser
Syntax	whatsnew whatsnew tool boxpath
Description	whatsnew displays the Release Notes (formerly called readme files for some products) in the Help browser.
	whatsnew tool boxpath displays the Release Notes for the toolbox specified by the string tool boxpath.
See Also	hel p, lookfor, path, versi on, whi ch

which

Purpose	Locate functions and files
Graphical Interface	As an alternative to the whi ch function, use the Current Directory browser.
Syntax	<pre>which fun which classname/fun which private/fun which classname/private/fun which fun1 in fun2 which fun(a, b, c,) which file.ext which fun -all s = which('fun',)</pre>
Description	 whi ch fun displays the full pathname for the argument fun. If fun is a MATLAB function or Simulink model in an M, P, or MDL file on the MATLAB path, then whi ch displays the full pathname for the corresponding file Workspace variable or built-in function, then whi ch displays a message identifying fun as a variable or built-in function Method in a loaded Java class, then whi ch displays the package, class, and method name for that method
	If fun is an overloaded function or method, then which fun returns only the pathname of the first function or method found. which classname/fun displays the full pathname for the M-file defining the fun method in MATLAB class, classname. For example, which serial / fopen displays the path for fopen. m in the MATLAB class directory, @serial. which private/fun limits the search to private functions. For example, which private/orthog displays the path for orthog. m in the /private subdirectory of tool box/matlab/el mat. which classname/private/fun limits the search to private methods defined by the MATLAB class, classname. For example, which dfilt/private/todtf displays the path for todtf. m in the private directory of the dfilt class.

	which fun1 in fun2 displays the pathname to function fun1 in the context of the M-file fun2. You can use this form to determine whether a subfunction or private version of fun1 is called from fun2, rather than a function on the path. For example, which get in editpath tells you which get function is called by editpath. m. During debugging of fun2, using which fun1 gives the same result. which fun(a, b, c,) displays the path to the specified function with the given input arguments. For example, if d is a database driver object, then
	which get(d) displays the path tool box/database/database/@driver/get.m.
	whi ch file. ext displays the full pathname of the specified file if that file is in the current working directory or on the MATLAB path. Use exist to check for the existence of files anywhere else.
	whi ch fun - all displays the paths to all items on the MATLAB path with the name fun. You may use the - all qualifier with any of the above formats of the whi ch function.
	s = which('fun',) returns the results of which in the string s. For built-in functions or workspace variables, s will be the string built-in or variable, respectively. You may specify an output variable in any of the above formats of the which function.
	If - all is used with this form, the output s is always a cell array of strings, even if only one string is returned.
Examples	The first statement below reveals that i nv is a built-in function. The second indicates that $pi\;nv$ is in the matfun directory of MATLAB.
	which inv inv is a built-in function.
	which pinv matlabroot\toolbox\matlab\matfun\pinv.m
	To find the fopen function used on MATLAB serial class objects
	which serial/fopen matlabroot\toolbox\matlab\iofun\@serial\fopen.m % serial method

To find the setTitle method used on objects of the Java Frame class, the class must first be loaded into MATLAB. The class is loaded when you create an instance of the class:

```
frameObj = java.awt.Frame;
which setTitle
java.awt.Frame.setTitle % Frame method
```

The following example uses the form, whi ch fun(a, b, c, ...). The response returned from whi ch depends upon the arguments of the function feval. When fun is a function handle, MATLAB evaluates the function using the feval built-in function:

```
fun = @abs;
which feval(fun, -2.5)
feval is a built-in function.
```

When fun is the inline function, MATLAB evaluates the function using the feval method of the inline class:

```
\label{eq:star} \begin{array}{l} fun \ = \ inline('abs(x)'); \\ which \ feval (fun, -2.5) \\ matlabroot \ box \ matlab \ funfun \ einline \ feval.m \ \% \ inline \\ method \end{array}
```

When you specify an output variable, whi ch returns a cell array of strings to the variable. You must use the *function* form of whi ch, enclosing all arguments in parentheses and single quotes:

s = which('private/stradd','-all');
whos s
Name Size Bytes Class
s 3x1 562 cell array
Grand total is 146 elements using 562 bytes

See Also dir, doc, exist, lookfor, path, type, what, who

Purpose	Repeat statements an indefinite number of times
Syntax	while <i>expressi on</i> <i>statements</i> end
Description	<pre>while repeats statements an indefinite number of times. The statements are executed while the real part of expressi on has all nonzero elements. expressi on is usually of the form expressi on rel_op expressi on where rel_op is ==, <, >, <=, >=, or ~=.</pre>
	The scope of a while statement is always terminated with a matching end.
Arguments	<pre>expression expression is a MATLAB expression, usually consisting of variables or smaller expressions joined by relational operators (e.g., count < limit), or logical functions (e.g., i sreal (A)). Simple expressions can be combined by logical operators (&, ,~) into compound expressions such as the following. MATLAB evaluates compound expressions from left to right, adhering to operator precedence rules.</pre>
	(count < limit) & ((height - offset) >= 0)
	statements statements is one or more MATLAB statements to be executed only while the expressi on is true or nonzero.
Remarks	Nonscalar Expressions If the evaluated expressi on yields a nonscalar value, then every element of this value must be true or nonzero for the entire expression to be considered true. For example, the statement, while ($A < B$) is true only if each element of matrix A is less than its corresponding element in matrix B. See Example 2, below.

Partial Evaluation of the Expression Argument

Within the context of an if or while expression, MATLAB does not necessarily evaluate all parts of a logical expression. In some cases it is possible, and often advantageous, to determine whether an expression is true or false through only partial evaluation.

For example, if A equals zero in statement 1 below, then the expression evaluates to fal se, regardless of the value of B. In this case, there is no need to evaluate B and MATLAB does not do so. In statement 2, if A is nonzero, then the expression is true, regardless of B. Again, MATLAB does not evaluate the latter part of the expression.

1) while (A & B) 2) while (A | B)

You can use this property to your advantage to cause MATLAB to evaluate a part of an expression only if a preceding part evaluates to the desired state. Here are some examples.

```
while (b ~= 0) & (a/b > 18.5)
if exist('myfun.m') & (myfun(x) >= y)
if iscell(A) & all(cellfun('isreal', A))
```

Examples

Example 1 - Simple while Statement

The variable eps is a tolerance used to determine such things as near singularity and rank. Its initial value is the *machine epsilon*, the distance from 1.0 to the next largest floating-point number on your machine. Its calculation demonstrates while loops.

Example 2 - Nonscalar Expression

Given matrices A and B

A =			B =	
	1	0	1	1
	2	3	3	4

Expression	Evaluates As	Because
A < B	false	A(1, 1) is not less than $B(1, 1)$.
A < (B + 1)	true	Every element of A is less than that same element of B with 1 added.
A & B	false	A(1, 2) & B(1, 2) is false.
B < 5	true	Every element of B is less than 5.

See Also end, for, break, continue, return, all, any, if, switch

whitebg

Purpose	Change axes background color
Syntax	whitebg whitebg(h) whitebg(ColorSpec) whitebg(h, ColorSpec)
Description	whitebg complements the colors in the current figure.
	white $bg(h)$ complements colors in all figures specified in the vector h .
	whitebg(ColorSpec) and whitebg(h, ColorSpec) change the color of the axes, which are children of the figure, to the color specified by ColorSpec.
Remarks	whitebg changes the colors of the figure's children, with the exception of shaded surfaces. This ensures that all objects are visible against the new background color. whitebg sets the default properties on the root such that all subsequent figures use the new background color.
Examples	Set the background color to blue-gray.
	whitebg([0.5.6])
	Set the background color to blue.
	whitebg('blue')
See Also	Col or Spec
	The figure graphics object property InvertHardCopy
	"Color Operations" for related functions

Purpose	List variables in the workspace
Graphical Interface	As an alternative to whos, use the Workspace browser.
Syntax	<pre>who whos who('global') whos('global') who('-file', 'filename') whos('-file', 'filename') whos('var1', 'var2',) whos('var1', 'var2',) who('-file', 'filename', 'var1', 'var2',) s = who() s = who() who -file filename var1 var2 whos -file filename var1 var2</pre>
Description	<pre>who lists the variables currently in the workspace. whos lists the current variables and their sizes and types. It also reports the totals for sizes. who('global') and whos('global') list the variables in the global workspace. who('-file', 'filename') and whos('-file', 'filename') list the variables in the specified MAT-file filename. Use the full path for filename. who('var1', 'var2',) and whos('var1', 'var2',) restrict the display to the variables specified. The wildcard character * can be used to display variables that match a pattern. For example, who('A*') finds all variables in the current workspace that start with A. who('-file', 'filename', 'var1', 'var2',) list the specified variables in the MAT-file filename. The wildcard character * can be used to display variables that match a pattern.</pre>

s = who(...) returns a cell array containing the names of the variables in the workspace or file and assigns it to the variable s. s = whos(...) returns a structure with these fields variable name name variable size si ze number of bytes allocated for the array bytes class of variable cl ass and assigns it to the variable s. who -file filename var1 var2 ... and whos -file filename var1 var2 ... are the unquoted forms of the syntax. See Also assignin, dir, evalin, exist, what, workspace

Purpose	Wilkinson's	s eigei	ivalue	test 1	natrix	Σ.		
Syntax	W = wilkin	nson(1	n)					
Description		tric, t					/ilkinson's eigenvalue test matrices pairs of nearly, but not exactly, equ	
Examples	wi l ki ns	on(7)						
	ans =							
	3	1	0	0	0	0	0	
	1	2	1	0	0	0	0	
	0	1	1	1	0	0	0	
	0	0	1	0	1	0	0	
	0	0	0	1	1	1	0	
	0	0	0	0	1	2	1	
	0	0	0	0	0	1	3	
		•	•				son(21). Its two largest eigenvalu	es

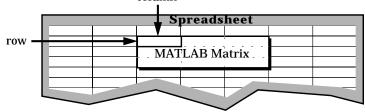
are both about 10.746; they agree to 14, but not to 15, decimal places.

See Also eig, gallery, pascal

winopen

Purpose	Open file in appropriate application (Windows only)
Syntax	winopen('filename')
Description	wi nopen('filename') opens filename in the the appropriate Microsoft Windows application. The wi nopen function uses the appropriate Windows shell command, and performs the same action as if you double-click on the file in the Windows Explorer. If filename is not in the current directory, specify the absolute path for filename.?
Description	Open the file mywebpage. html , located in the current directory, in your system's default Web browser winopen('mywebpage. html')
Examples	Running wi nopen('thesis.doc') open the file thesis.doc, located in the current directory, in Microsoft Word. To open myresults.html in your system's default Web browser, run wi nopen('D:/myfiles/myresults.html')
See Also	dos, open, web

Purpose	Read Lotus123 spreadsheet file (. wk1)		
Syntax	<pre>M = wk1read(filename) M = wk1read(filename, r, c) M = wk1read(filename, r, c, range)</pre>		
Description	M = wk1read(filename) reads a Lotus123 WK1 spreadsheet file into the matrix M		
	M = wk1read(filename, r, c) starts reading at the row-column cell offset specified by (r, c) . r and c are zero based so that r=0, c=0 specifies the first value in the file.		
	M = wk1read(filename, r, c, range) reads the range of values specified by the parameter range, where range can be:		
	• A four-element vector specifying the cell range in the format		
	[upper_left_row upper_left_col lower_right_row lower_right_col]		
	column		
	row		


row MATLAB Matrix

- A cell range specified as a string; for example, ' A1. . . C5' .
- \bullet A named range specified as a string; for example, ' Sal es' .

wk1write

Purpose	Write a matrix to a Lotus123 WK1 spreadsheet file
Syntax	<pre>wk1write(filename, M) wk1write(filename, M, r, c)</pre>
Description	wk1write(filename, M) writes the matrix Minto a Lotus123 WK1 spreadsheet file named filename.
	wk1write(filename, M, r, c) writes the matrix starting at the spreadsheet location (r, c) . r and c are zero based so that r=0, c=0 specifies the first cell in the spreadsheet.
	column

See Also wk1read, dl mwrite, dl mread, csvwrite, csvread

Purpose	Display the Workspace browser, a tool for managing the workspace
---------	--

GraphicalAs an alternative to the workspace function, select Workspace from the ViewInterfacemenu in the MATLAB desktop.

Syntax workspace

Description workspace displays the Workspace browser, a graphical user interface that allows you to view and manage the contents of the MATLAB workspace. It provides a graphical representation of the whos display, and allows you to perform the equivalent of the cl ear, l oad, open, and save functions.

🚸 Workspace			
<u>F</u> ile <u>E</u> dit <u>V</u> iew We <u></u> t	<u>o W</u> indov	v <u>H</u> elp	
🖙 🔚 🔯 晴 Stack	Base	2	
Name	Size	Bytes	Class
🗮 a	1x10	80	double array
Щ с	1x1	16	double array (complex)
68) e	1x1	4	cell array
g 🗮 g	1x10	80	double array (global)
i i	1x10	10	int8 array
⊞ 1	1x10	80	double array (logical)
abo m	1x6	12	char array
@ n	1x1	822	inline object
N p	1x10	164	sparse array
E s	1x1	406	struct array
u 🎛 u	1x10	40	uint32 array
Ready			

To see and edit a graphical representation of a variable, double-click the variable in the Workspace browser. The variable is displayed in the Array Editor, where you can edit it. You can only use this feature with numeric arrays.

See Also

who

xlabel, ylabel, zlabel

Purpose	Label the <i>x</i> -, <i>y</i> -, and <i>z</i> -axis
Syntax	<pre>xlabel('string') xlabel(fname) xlabel(, 'PropertyName', PropertyValue,) h = xlabel()</pre>
	yl abel () h = yl abel ()
	zl abel () h = zl abel ()
Description	Each axes graphics object can have one label for the <i>x</i> -, <i>y</i> -, and <i>z</i> -axis. The label appears beneath its respective axis in a two-dimensional plot and to the side or beneath the axis in a three-dimensional plot.
	xl abel ('string') labels the x-axis of the current axes.
	xl abel (fname) evaluates the function fname, which must return a string, then displays the string beside the <i>x</i> -axis.
	xl abel $(\ldots, '$ PropertName', PropertyVal ue, \ldots) specifies property name and property value pairs for the text graphics object created by xl abel.
	h = xl abel (), h = yl abel (), and h = zl abel () return the handle to the text object used as the label.
	yl abel $()$ and zl abel $()$ label the <i>y</i> -axis and <i>z</i> -axis, respectively, of the current axes.
Remarks	Re-issuing an $\mathbf{x}\mathbf{l}$ abel , $\mathbf{y}\mathbf{l}$ abel , or $\mathbf{z}\mathbf{l}$ abel $\mbox{command}$ causes the new label to replace the old label.
	For three-dimensional graphics, MATLAB puts the label in the front or side, so that it is never hidden by the plot.
See Also	text, title
	"Annotating Plots" for related functions

Adding Axis Labels to Graphs for more information about labeling axes

xlim, ylim, zlim

Purpose	Set or query axis limits
Syntax	Note that the syntax for each of these three functions is the same; only the xl i m function is used for simplicity. Each operates on the respective x-, y-, or z-axis.
	xlim
	xlim([xmin xmax])
	xlim('mode')
	<pre>xlim('auto') xlim('manual')</pre>
	xl i m(axes_handl e,)
Description	xl i m with no arguments returns the respective limits of the current axes.
	xl i m([xmi n xmax]) sets the axis limits in the current axes to the specified values.
	xl i m(' mode') returns the current value of the axis limits mode, which can be either auto (the default) or manual .
	xlim('auto') sets the axis limit mode to auto.
	xlim('manual') sets the respective axis limit mode to manual .
	xl i m(axes_handl e,) performs the set or query on the axes identified by the first argument, axes_handl e. When you do not specify an axes handle, these functions operate on the current axes.
Remarks	xlim, ylim, and zlim set or query values of the axes object XLim, YLim, ZLim, and XLimMode, YLimMode, ZLimMode properties.
	When the axis limit modes are auto (the default), MATLAB uses limits that span the range of the data being displayed and are round numbers. Setting a value for any of the limits also sets the corresponding mode to manual. Note that high-level plotting functions like pl ot and surf reset both the modes and the limits. If you set the limits on an existing graph and want to maintain these limits while adding more graphs, use the hold command.

Examples This example illustrates how to set the *x*- and *y*-axis limits to match the actual range of the data, rather than the rounded values of [-2 3] for the *x*-axis and [-2 4] for the *y*-axis originally selected by MATLAB.

See Also

axi s

The axes properties XLi m, YLi m, ZLi m

"Setting the Aspect Ratio and Axis Limits" for related functions

Understanding Axes Aspect Ratio for more information on how axis limits affect the axes.

xlsfinfo

Purpose	Determine if file contains Microsoft Excel (. xl s) spreadsheet
Syntax	<pre>[A, Descr] = xlsfinfo('filename')</pre>
Description	[A, Descr] = xl sfinfo('filename') returns the character array 'Microsoft Excel Spreadsheet' in A if filename is an Excel spreadsheet. Returns an empty string if filename is not an Excel spreadsheet. Descr is a cell array of strings containing the name of each spreadsheet in the file.
Examples	<pre>When filename is an Excel spreadsheet: [a, descr] = xlsfinfo('tempdata.xls') a = Microsoft Excel Spreadsheet descr =</pre>
	'Sheet1'
See Also	xl sread

Purpose	Read Microsoft Excel spreadsheet file (. xl s)
Syntax	<pre>A = xlsread('filename') [A, B] = xlsread('filename') [] = xlsread('filename', 'sheetname')</pre>
Description	A = xl sread(' filename') returns numeric data in array A from the first sheet in Microsoft Excel spreadsheet file named <i>filename</i> . xl sread ignores leading rows or columns of text. However, if a cell not in a leading row or column is empty or contains text, xl sread puts a NaN in its place in A.
	[A, B] = xl sread('filename') returns numeric data in array A, text data in cell array B. If the spreadsheet contains leading rows or columns of text, xl sread returns only those cells in B. If the spreadsheet contains text that is not in a row or column header, xl sread returns a cell array the same size as the original spreadsheet with text strings in the cells that correspond to text in the original spreadsheet. All cells that correspond to numeric data are empty.
	$[\dots] = xl \operatorname{sread}('filename', 'sheetname')$ read sheet specified in sheetname. Returns an error if sheetname does not exist. To determine the names of the sheets in a spreadsheet file, use $xl \operatorname{sfi} nfo$.
	Handling Excel Date Values When reading date fields from Excel files, you must convert the Excel date values into MATLAB date values. Both Microsoft Excel and MATLAB represent dates as serial days elapsed from some reference date. However, Microsoft Excel uses January 1, 1900 as the reference date and MATLAB uses January 1, 0000.
	For example, if your Excel file contains these date values,
	4/12/00 4/13/00 4/14/00
	use this code to convert the dates to MATLAB dates.
	<pre>excelDates = xlsread('filename') matlabDates = datenum('30-Dec-1899') + excelDates datestr(matlabDates, 2) ans =</pre>

04/12/00 04/13/00 04/14/00

Examples

Example 1 – Reading Numeric Data

The Microsoft Excel spreadsheet file, testdata1. xl s, contains this data:

To read this data into MATLAB, use this command:

A = xlsread('testdata1.xls') A = 1 6 2 7 3 8 4 9 5 10

Example 2 – Handling Text Data

The Microsoft Excel spreadsheet file, testdata2. xl s, contains a mix of numeric and text data.

xl sread puts a NaN in place of the text data in the result.

A = xlsread('testdata2.xls') A = 1 6 2 7 3 8 4 9 5 NaN

Example 3 – Handling Files with Row or Column Headers

The Microsoft Excel spreadsheet file, tempdata. xl s, contains two columns of numeric data with text headers for each column:

TimeTemp129813991497

If you want to import only the numeric data, use xl sread with a single return argument. xl sread ignores a leading row or column of text in the numeric result.

```
ndata = xlsread('tempdata.xls')
ndata =
12 98
13 99
14 97
```

To import both the numeric data and the text data, specify two return values for ${\bf xl}$ sread.

See Also

wk1read, textread, xlsfinfo

Purpose	Parse XML document and return Document Object Model node
Syntax	<pre>DOMnode = xml read(filename)</pre>
Description	DOMnode = xml read(filename) reads a URL or filename and returns a Document Object Model node representing the parsed document.
Remarks	Find out more about the Document Object Model at the World Wide Web Consortium (W3C) Web site, http://www.w3.org/D0M/. For specific information on using Java DOM objects, visit the Sun Web site, http://www.java.sun.com/xml/docs/api.
See Also	xmlwrite, xslt

xmlwrite

Purpose	Serialize XML Document Object Model node
Syntax	<pre>xmlwrite(filename, DOMnode) str = xmlwrite(DOMnode)</pre>
Description	xmlwrite(filename, DOMnode) serializes the Document Object Model node, DOMnode, to the file specified by filename.
	str = xml write(DOMnode) serializes the Document Object Model node, DOMnode, and returns the node tree as a string, s.
Remarks	Find out more about the Document Object Model at the World Wide Web Consortium (W3C) Web site, http://www.w3.org/D0M/. For specific information on using Java DOM objects, visit the Sun Web site, http://www.java.sun.com/xml/docs/api.
Example	<pre>% Create a sample XML document. docNode = com.mathworks.xml.XMLUtils.createDocument ('root_element') docRootNode = docNode.getDocumentElement; for i=1:20 thisElement = docNode.createElement('child_node'); thisElement.appendChild (docNode.createTextNode(sprintf('%i',i))); docRootNode.appendChild(thisElement); end docNode.appendChild(docNode.createComment('this is a comment')); % Save the sample XML document. xmlFileName = [tempname,'.xml']; xml write(xmlFileName,docNode); edit(xmlFileName);</pre>
See Also	xml read, xsl t

Purpose	Exclusive or		
Syntax	C = xor(A, B)		
Description	C = xor(A, B) performs an exclusive OR operation on the corresponding elements of arrays A and B. The resulting element $C(i, j,)$ is logical true (1) if $A(i, j,)$ or $B(i, j,)$, but not both, is nonzero.		
	Α	В	c
	zero	zero	0
	zero	nonzero	1
	nonzero	zero	1
	nonzero	nonzero	0
Examples	Given A = $\begin{bmatrix} 0 & 0 & pi & eps \end{bmatrix}$ and B = $\begin{bmatrix} 0 & -2.4 & 0 & 1 \end{bmatrix}$, then C = xor (A, B) C = 0 1 1 0 To see where either A or B has a nonzero element and the other matrix does not,		
	spy(xor(A	, В))	
See Also	all, any, find	l, l ogi cal opera	ators

Purpose	Transform XML document using XSLT engine
Syntax	<pre>result = xslt(source, style, dest) [result,style] = xslt() xslt(,'-web')</pre>
Description	result = $xslt(source, style, dest)$ transforms an XML document using a stylesheet and returns the resulting document's URL. The function uses these inputs, the first of which is required:
	• source is the filename or URL of the source XML file. source can also specify a DOM node.
	• style is the filename or URL of an XSL stylesheet.
	• dest is the filename or URL of the desired output document. If dest is absent or empty, the function uses a temporary filename. If dest is '-tostring', the function returns the output document as a MATLAB string.
	[result, style] = xslt() returns a processed stylesheet appropriate for passing to subsequent XSLT calls, as $style$. This prevents costly repeated processing of the stylesheet.
	$xslt(\ldots,'$ - web') displays the resulting document in the Help Browser.
Remarks	Find out more about XSL stylesheets and how to write them at the World Wide Web Consortium (W3C) web site, http://www.w3.org/Style/XSL/.
Example	This example converts the file i nfo. xml using the stylesheet i nfo. xsl, writing the output to the file i nfo. html. It launches the resulting HTML file in the Help Browser. MATLAB has several i nfo. xml files that are used by the Launch Pad.
	xslt info.xml info.xsl info.html -web
See Also	xml read, xml write

Purpose	Create an array of all zeros
Syntax	<pre>B = zeros(n) B = zeros(m, n) B = zeros([m n]) B = zeros(d1, d2, d3) B = zeros([d1 d2 d3]) B = zeros(size(A))</pre>
Description	B = zeros(n) returns an n-by-n matrix of zeros. An error message appears if n is not a scalar.
	B = zeros(m, n) or $B = zeros([m n])$ returns an m-by-n matrix of zeros.
	B = zeros(d1, d2, d3) or $B = zeros([d1 d2 d3])$ returns an array of zeros with dimensions d1-by-d2-by-d3-by
	B = zeros(size(A)) returns an array the same size as A consisting of all zeros.
Remarks	The MATLAB language does not have a dimension statement; MATLAB automatically allocates storage for matrices. Nevertheless, for large matrices, MATLAB programs may execute faster if the zeros function is used to set aside storage for a matrix whose elements are to be generated one at a time, or a row or column at a time. For example
	x = zeros(1, n); for i = 1:n, x(i) = i; end
See Also	eye, ones, rand, randn

Purpose	Create compressed version of files in zip format
Syntax	<pre>zip('zipfilename', 'files') zip('zipfilename', 'directory') zip(, 'rootdirectory')</pre>
Description	zip('zipfilename', 'files') creates a zip file named zipfilename from the file named files. For multiple files, make files a cell array of strings. Paths for zipfilename and files are relative to the current directory. Zip files are often used for archiving or for minimizing file transmission time.
	zip('zipfilename', 'directory') creates a zip file named zipfilename consisting of the specified directory and all files in it. The paths for zipfilename and directory are relative to the current directory.
	zi p('zi pfilename', 'source', 'rootdi rectory') allows the path specified for source to be relative to 'rootdi rectory' rather than to the current directory. Note that source cannot be an absolute path.
Examples	Zipping a File Create a zip file of the file gui de. vi ewl et, which is in the demos directory of MATLAB. It saves the zip file in d: /mymfiles/viewlet.zip.
	zip('d:/mymfiles/viewlet.zip','\$matlabroot/demos/guide.viewlet')
	Zip the files guide. viewlet and import. viewlet and save the zip file in viewlets. zip. The source files and zipped file are in the current directory.
	<pre>zip('viewlets.zip', {'guide.viewlet', 'import.viewlet'})</pre>
	Zipping a Directory Zip the directory D: /mymfiles and its contents to the zip file mymfiles in the directory one level up from the current directory.
	<pre>zip('/mymfiles','D:/mymfiles')</pre>
	Zip the files thesis. doc and defense. ppt, which are located in d: /PhD, to the zip file thesis. zip in the current directory.
	$zip('thesis.zip'$, { ' thesi s. doc' , ' defense. ppt' } , ' d: /PhD')

See Also unzi p

zoom

Purpose	Zoom in and out on a 2-D plot
Syntax	zoom on zoom off zoom out zoom reset zoom zoom xon zoom yon zoom(factor) zoom(fig, option)
Description	 zoom on turns on interactive zooming. When interactive zooming is enabled in a figure, pressing a mouse button while your cursor is within an axes zooms into the point or out from the point beneath the mouse. Zooming changes the axes limits. For a single-button mouse, zoom in by pressing the mouse button and zoom out by simultaneously pressing Shift and the mouse button.
	 For a two- or three-button mouse, zoom in by pressing the left mouse button and zoom out by pressing the right mouse button. Clicking and dragging over an axes when interactive zooming is enabled draws a rubber-band box. When the mouse button is released, the axes zoom in to the region enclosed by the rubber-band box.
	 Double-clicking over an axes returns the axes to its initial zoom setting. zoom off turns interactive zooming off. zoom out returns the plot to its initial zoom setting. zoom reset remembers the current zoom setting as the initial zoom setting. Later calls to zoom out, or double-clicks when interactive zoom mode is enabled, will return to this zoom level. zoom toggles the interactive zoom status. zoom xon and zoom yon set zoom on for the <i>x</i>- and <i>y</i>-axis, respectively.

	zoom(factor) zooms in or out by the specified zoom factor, without affecting the interactive zoom mode. Values greater than 1 zoom in by that amount, while numbers greater than 0 and less than 1 zoom out by 1/factor.
	zoom(fig, option) Any of the above options can be specified on a figure other than the current figure using this syntax.
Remarks	zoom changes the axes limits by a factor of two (in or out) each time you press the mouse button while the cursor is within an axes. You can also click and drag the mouse to define a zoom area, or double-click to return to the initial zoom level.
See Also	"Object Manipulation" for related functions

zoom

Index

Numerics

1-norm 2-199

Α

Accel erator Uimenu property 2-659 allocation of storage (automatic) 2-777 Al phaData surface property 2-501 Al phaDataMappi ng patch property 2-31 surface property 2-501 Ambi entStrength Patch property 2-31 Surface property 2-502 annotating plots 2-102 archiving files 2-778 arguments, M-file passing variable numbers of 2-699 array product of elements 2-145 of random numbers 2-188, 2-190 removing first n singleton dimensions of 2-337 removing singleton dimensions of 2-404 reshaping 2-248 shifting dimensions of 2-337 size of 2-348 sorting elements of 2-359 structure 2-263, 2-330 sum of elements 2-484 swapping dimensions of 2-84 of all zeros 2-777 arrays editing 2-763 ASCII data

converting sparse matrix after loading from 2-368 saving to disk 2-290 aspect ratio of axes 2-54 axes setting and querying limits 2-766 setting and querying plot box aspect ratio 2-54 axes editing 2-102 azimuth (spherical coordinates) 2-376 azimuth of viewpoint 2-712

В

BackFaceLi ghting Surface property 2-502 BackFaceLi ght i ngpatch property 2-32 BackGroundCol or **Uicontrol property 2-630** BackgroundCol or Text property 2-562 badly conditioned 2-199 binary data saving to disk 2-290 bold font TeX characters 2-576 **Buckminster Fuller 2-536 BusyAction** patch property 2-32 rectangle property 2-217 Root property 2-268 Surface property 2-502 Text property 2-563 Uicontextmenu property 2-617 **Uicontrol property 2-630** Uimenu property 2-660

ButtonDownFcn patch property 2-32 rectangle property 2-217 Root property 2-268 Surface property 2-503 Text property 2-563 Uicontextmenu property 2-617 Uicontrol property 2-631 Uimenu property 2-660

С

caching MATLAB directory 2-49 Call Back Uicontextmenu property 2-617 **Uicontrol property 2-631** Uimenu property 2-660 Callback0bject, Root property 2-268 CaptureMatrix, Root property 2-268 CaptureRect, Root property 2-268 Cartesian coordinates 2-108, 2-376 case in switch statement (defined) 2-525 lower to upper 2-693 Cayley-Hamilton theorem 2-124 CData Surface property 2-503 **Uicontrol property 2-632** CDat a Mappi ng patch property 2-34 Surface property 2-503 CDatapatch property 2-32 characters conversion, in format specification string 2 - 393escape, in format specification string 2-394 check boxes 2-622 Checked, Uimenu property 2-661 checkerboard pattern (example) 2-246 child functions 2-146 Children patch property 2-35 rectangle property 2-217 Root property 2-268 Surface property 2-504 Text property 2-563 Uicontextmenu property 2-617 **Uicontrol property 2-632** Uimenu property 2-661 Cholesky factorization lower triangular factor 2-18 minimum degree ordering and (sparse) 2-534 Cl i ppi ng rectangle property 2-218 Root property 2-268 Surface property 2-504 Text property 2-563 Uicontextmenu property 2-618 Uicontrol property 2-632 Uimenu property 2-661 Cl i ppi ngpatch property 2-35 closest triangle search 2-612 closing **MATLAB 2-179** Color Text property 2-564 colormaps converting from RGB to HSV 2-255 plotting RGB components 2-256 COM object methods propedit 2-154 registerevent 2-239

rel ease 2-243 save 2-293 send 2-314 set 2-322 unregisterallevents 2-684 unregi sterevent 2-686 commercial MATLAB emulating the Runtime Server 2-289 complex numbers, sorting 2-359, 2-361 sine 2-343 unitary matrix 2-162 complex Schur form 2-304 compress files 2-778 condition number of matrix 2-199 context menu 2-614 continued fraction expansion 2-194 conversion cylindrical to Cartesian 2-108 full to sparse 2-365 lowercase to uppercase 2-693 partial fraction expansion to pole-residue 2 - 250polar to Cartesian 2-108 pole-residue to partial fraction expansion 2 - 250real to complex Schur form 2-286 spherical to Cartesian 2-376 string to numeric array 2-424 conversion characters in format specification string 2-393 coordinate system and viewpoint 2-712 coordinates Cartesian 2-108. 2-376 cylindrical 2-108 polar 2-108 spherical 2-376

CreateFcn patch property 2-35 rectangle property 2-218 Root property 2-268 Surface property 2-504 Text property 2-564 Uicontextmenu property 2-618 Uicontrol property 2-632 Uimenu property 2-661 cubic interpolation 2-63 current directory 2-157 CurrentFigure, Root property 2-269 Curvature, rectangle property 2-218 curve fitting (polynomial) 2-117 Cuthill-McKee ordering, reverse 2-534, 2-536 cylindrical coordinates 2-108

D

data ASCII, saving to disk 2-290 binary, dependence upon array size and type 2 - 292binary, saving to disk 2-290 computing 2-D stream lines 2-430 computing 3-D stream lines 2-432 formatting 2-392 reading from files 2-579 reducing number of elements in 2-229 smoothing 3-D 2-357 writing to strings 2-392 data, ASCII converting sparse matrix after loading from 2-368 debugging **M-files 2-146** decomposition

"economy-size" 2-162, 2-520 orthogonal-triangular (QR) 2-162 Schur 2-304 singular value 2-193, 2-520 definite integral 2-173 DeleteFcn Root property 2-269 Surface property 2-504 Text property 2-564, 2-565 Uicontextmenu property 2-618 Uicontrol property 2-632 Uimenu property 2-662 Del et eFcn, rectangle property 2-219 Del et eFcnpatch property 2-35 dependence, linear 2-479 dependent functions 2-146 derivative polynomial 2-114 detecting positive, negative, and zero array elements 2 - 342diagonal k-th (illustration) 2-601 sparse 2-370 dialog box print 2-143 question 2-177 warning 2-732 Di ary, Root property 2-269 Di aryFile, Root property 2-269 differences between sets 2-329 differential equation solvers ODE boundary value problems extracting properties of 2-599, 2-600 parabolic-elliptic PDE problems 2-69 DiffuseStrength

Surface property 2-505 DiffuseStrengthpatch property 2-36 digamma function 2-155 dimension statement (lack of in MATLAB) 2-777 dimensions size of 2-348 direct term of a partial fraction expansion 2-250 directories listing MATLAB files in 2-747 MATLAB caching 2-49 removing 2-260 removing from search path 2-264 directory temporary system 2-545 directory, current 2-157 discontinuities, eliminating (in arrays of phase angles) 2-690 division remainder after 2-245

Ε

Echo, Root property 2-269 EdgeAl pha patch property 2-36 surface property 2-505 EdgeCol or patch property 2-36 Surface property 2-505 Text property 2-564 EdgeCol or, rectangle property 2-219 EdgeLi ght i ng patch property 2-37 Surface property 2-506 editable text 2-622 eigenvalue

modern approach to computation of 2-112 problem 2-115 problem, generalized 2-115 problem, polynomial 2-115 Wilkinson test matrix and 2-759 eigenvector matrix, generalized 2-186 elevation (spherical coordinates) 2-376 elevation of viewpoint 2-712 Enabl e **Uicontrol property 2-632** Uimenu property 2-662 EraseMode rectangle property 2-219 Surface property 2-506 Text property 2-566 EraseModepatch property 2-37 error messages Out of memory 2-12 ErrorMessage, Root property 2-269 ErrorType, Root property 2-270 escape characters in format specification string 2 - 394examples reducing number of patch faces 2-226 reducing volume data 2-229 subsampling volume data 2-482 **Excel spreadsheets** loading 2-769 executing statements repeatedly 2-753 execution improving speed of by setting aside storage 2 - 777pausing M-file 2-53 time for M-files 2-146 extension. filename . mat 2-290

Extent Text property 2-566 Uicontrol property 2-633

F

FaceAl phapatch property 2-38 FaceAl phasurface property 2-507 FaceCol or Surface property 2-508 FaceCol or, rectangle property 2-220 FaceCol orpatch property 2-39 FaceLi ghti ng Surface property 2-508 FaceLi ght i ngpatch property 2-39 faces, reducing number in patches 2-225 Faces, patch property 2-39 FaceVertexAl phaData, patch property 2-40 FaceVertexCData, patch property 2-41 factorization QZ 2-115, 2-186 See also decomposition factorization, Cholesky minimum degree ordering and (sparse) 2-534 Figure redrawing 2-231 figures annotating 2-102 saving 2-296 filename temporary 2-546 filename extension . mat 2-290 files compressing 2-778 contents, listing 2-613

Excel spreadsheets

loading 2-769 fig 2-296 figure, saving 2-296 listing in directory 2-747 listing contents of 2-613 locating 2-750 mdl 2-296 model, saving 2-296 opening in Web browser 2-744 opening in Windows applications 2-760 pathname for 2-750 reading data from 2-579 readme 2-749 sound reading 2-741 writing 2-743 . wav reading 2-741 writing 2-743 WK1 loading 2-761 writing to 2-762 finding sign of array elements 2-342 finish.m2-179 fixed-width font text 2-567 uicontrols 2-634 Fi xedWi dthFontName, Root property 2-269 floating-point arithmetic, IEEE smallest postive number 2-205 flow control return 2-254 switch 2-525

while 2-753 font fixed-width. text 2-567 fixed-width. uicontrols 2-634 FontAngl e Text property 2-567 Uicontrol property 2-634 FontName Text property 2-567 Uicontrol property 2-634 fonts bold 2-568 italic 2-567 specifying size 2-568 TeX characters bold 2-576 italics 2-576 specifying family 2-576 specifying size 2-576 units 2-568 FontSi ze Text property 2-568 **Uicontrol property 2-635** FontUnits Text property 2-568 Uicontrol property 2-635 FontWeight Text property 2-568 Uicontrol property 2-635 ForegroundCol or Uicontrol property 2-635 Uimenu property 2-662 Format 2-270 format specification string, matching file data to 2-406 Format Spacing, Root property 2-270 formatting data 2-392

fraction, continued 2-194 fragmented memory 2-12 frames 2-623 functions locating 2-750 pathname for 2-750 that work down the first non-singleton dimension 2-337

G

gamma function logarithmic derivative 2-155 Gaussian elimination Gauss Jordan elimination with partial pivoting 2 - 284generalized eigenvalue problem 2-115 geodesic dome 2-536 graphics objects Patch 2-19 resetting properties 2-247 Root 2-265 setting properties 2-319 Surface 2-493 Text 2-554 uicontextmenu 2-614 Uicontrol 2-622 Uimenu 2-655 graphs editing 2-102 Greek letters and mathematical symbols 2-574 GUIs, printing 2-138

Η

Hadamard matrix subspaces of 2-479 Handl eVi si bility patch property 2-42 rectangle property 2-220 Root property 2-271 Surface property 2-508 Text property 2-568 Uicontextmenu property 2-618 **Uicontrol property 2-635** Uimenu property 2-662 HitTest Patch property 2-43 rectangle property 2-221 Root property 2-271 Surface property 2-509 Text property 2-569 Uicontextmenu property 2-619 Uicontrol property 2-636 Uimenu property 2-663 Horizontal Alignment Text property 2-570 **Uicontrol property 2-636** HTML files opening 2-744 hyperbolic secant 2-309 sine 2-346 tangent 2-543 hyperplanes, angle between 2-479

I

identity matrix sparse 2-373 IEEE floating-point arithmetic smallest positive number 2-205 indices, array of sorted elements 2-359 integration polynomial 2-120 quadrature 2-173 interpolated shading and printing 2-139 Interpreter, Text property 2-570 Interrupti bl e patch property 2-43 rectangle property 2-221 Root property 2-271 Surface property 2-510 Text property 2-570 Uicontextmenu property 2-619 **Uicontrol property 2-636** Uimenu property 2-663 involutary matrix 2-18 italics font TeX characters 2-576

J Jacobi rotations 2-390 Java version used by MATLAB 2-708

Κ

keyboard mode terminating 2-254

L Label , Uimenu property 2-664 labeling axes 2-764 LaTeX, see TeX 2-574 least squares polynomial curve fitting 2-117 problem, overdetermined 2-91 limits of axes, setting and querying 2-766 Line properties 2-217 line editing 2-102 linear dependence (of data) 2-479 linear equation systems solving overdetermined 2-164-2-165 linear regression 2-117 lines computing 2-D stream 2-430 computing 3-D stream 2-432 drawing stream lines 2-434 Li neStyl e patch property 2-44 rectangle property 2-221 surface object 2-510 text object 2-570 Li neWi dth Patch property 2-44 rectangle property 2-222 Surface property 2-510 text object 2-572 list boxes 2-623 defining items 2-641 Li stboxTop, Uicontrol property 2-637 logarithm of real numbers 2-203 logarithmic derivative gamma function 2-155 logical operations XOR 2-775 Lotus WK1 files loading 2-761 writing 2-762 lower triangular matrix 2-601 lowercase to uppercase 2-693

Μ

machine epsilon 2-754 Marker Patch property 2-44 Surface property 2-510 MarkerEdgeCol or Patch property 2-45 Surface property 2-511 MarkerFaceCol or Patch property 2-45 Surface property 2-512 MarkerSi ze Patch property 2-45 Surface property 2-512 MAT-file 2-290 converting sparse matrix after loading from 2 - 368MAT-files listing for directory 2-747 MATLAB quitting 2-179 version number, displaying 2-702 MATLAB startup file 2-539 matlab.mat 2-290 matrices preallocation 2-777 matrix complex unitary 2-162 condition number of 2-199 converting to from string 2-405 decomposition 2-162 Hadamard 2-479 Hermitian Toeplitz 2-595 involutary 2-18 lower triangular 2-601 magic squares 2-484 orthonormal 2-162

Pascal 2-18, 2-123 permutation 2-162 pseudoinverse 2-91 reduced row echelon form of 2-284 replicating 2-246 rotating 90° 2-279 Schur form of 2-286, 2-304 sorting rows of 2-361 sparse *See* sparse matrix square root of 2-401 subspaces of 2-479 Toeplitz 2-595 trace of 2-596 unitary 2-520 upper triangular 2-608 Vandermonde 2-119 Wilkinson 2-371, 2-759 writing to spreadsheet 2-762 Max, Uicontrol property 2-638 memory minimizing use of 2-12 variables in 2-757 mesh plot tetrahedron 2-549 MeshStyle, Surface property 2-512 message error See error message warning See warning message methods locating 2-750 **MEX-files** listing for directory 2-747 M-file pausing execution of 2-53 M-files creating in MATLAB directory 2-49

debugging with profile 2-146 listing names of in a directory 2-747 optimizing 2-146 **Microsoft Excel files** loading 2-769 Min, Uicontrol property 2-638 minimum degree ordering 2-534 models saving 2-296 Moore-Penrose pseudoinverse 2-91 multidimensional arrays rearranging dimensions of 2-84 removing singleton dimensions of 2-404 reshaping 2-248 size of 2-348 sorting elements of 2-359

Ν

NaN (Not-a-Number) returned by rem 2-245 nonzero entries specifying maximum number of in sparse matrix 2-365 nonzero entries (in sparse matrix) replacing with ones 2-384 norm 1-norm 2-199 pseudoinverse and 2-91-2-93 Normal Mode Patch property 2-46 Surface property 2-512 numbers prime 2-128 random 2-188, 2-190 real 2-202 smallest positive 2-205

numerical evaluation triple integral 2-603

0

opening files in Windows applications 2-760 operating system command 2-540 optimizing M-file execution 2-146 ordering minimum degree 2-534 reverse Cuthill-McKee 2-534, 2-536 orthogonal-triangular decomposition 2-162 orthonormal matrix 2-162 Out of memory (error message) 2-12 overdetermined equation systems, solving 2-164– 2-165

Ρ

pack 2-12 pagedl g 2-14 pagesetupdl g 2-15 Parent Patch property 2-46 rectangle property 2-222 Root property 2-271 Surface property 2-512 Text property 2-573 Uicontextmenu property 2-620 Uicontrol property 2-639 Uimenu property 2-664 pareto 2-16 partial fraction expansion 2-250 partial path 2-17 pascal 2-18 Pascal matrix 2-18, 2-123

converting a surface to 2-491 creating 2-19 defining default properties 2-25 properties 2-31 reducing number of faces 2-225 reducing size of face 2-338 patch 2-19 path current 2-49 removing directories from 2-264 viewing 2-52 path 2-49 path2rc 2-51 pathname partial 2-17 pathnames of functions or files 2-750 relative 2-17 pathtool 2-52 pause 2-53 pausing M-file execution 2-53 pbaspect 2-54 pcg 2-59 pcg 2-59 pchi p 2-63 pcode 2-65 pcol or 2-66PDE See Partial Differential Equations pdepe 2-69 pdeval 2-80 perl 2-82 perms 2-83 permutation of array dimensions 2-84 matrix 2-162 random 2-192

Patch

permutations of n elements 2-83 permute 2-84 persistent 2-85 persistent variable 2-85 phase, complex correcting angles 2-688 pi 2-86 pi e 2-87 pi e3 2-89 pi nv 2-91 pl anerot 2-94 plot 2-95 editing 2-102 plot box aspect ratio of axes 2-54 Plot Editor interface 2-103, 2-153 plot, volumetric slice plot 2-352 pl ot 3 2-100 pl otedi t 2-102 plotmatrix 2-104 plotting 2-D plot 2-95 3-D plot 2-100 plot with two y-axes 2-106 ribbon plot 2-257 rose plot 2-276 scatter plot 2-104, 2-300 scatter plot, 3-D 2-302 semilogarithmic plot 2-312 stairstep plot 2-408 stem plot 2-415 stem plot, 3-D 2-417 surface plot 2-487 volumetric slice plot 2-352 plotting See visualizing pl ot yy 2-106

PointerLocation, Root property 2-271 PointerWindow, Root property 2-271 pol 2cart 2-108 pol ar 2-109 polar coordinates 2-108 converting to cylindrical or Cartesian 2-108 poles of transfer function 2-250 pol y 2-111 pol yarea 2-113 pol yder 2-114 pol yei g **2-115** polyfit **2-117** polygamma function 2-155 polygon area of 2-113 creating with patch 2-19 pol yi nt 2-120 polynomial analytic integration 2-120 characteristic 2-111-2-112, 2-274 coefficients (transfer function) 2-250 curve fitting with 2-117 derivative of 2-114 eigenvalue problem 2-115 evaluation 2-121 evaluation (matrix sense) 2-123 pol yval 2-121 pol yval m 2-123 pop-up menus 2-623 defining choices 2-641 Position Text property 2-573 Uicontextmenu property 2-620 **Uicontrol property 2-639** Uimenu property 2-664 Position, rectangle property 2-222 PostScript

printing interpolated shading 2-139 pow2 2-125 power of real numbers 2-206 ppval 2-126 preallocation matrix 2-777 prefdir 2-127 prime numbers 2-128 primes 2-128 print 2-129 printdlg 2-143 printer drivers GhostScript drivers 2-130 interploated shading 2-139 MATLAB printer drivers 2-130 printing GUIs 2-138 interpolated shading 2-139 on MS-Windows 2-137 with a variable filename 2-140 with non-normal EraseMode 2-38, 2-220, 2-507, 2 - 566printing tips 2-137 printopt 2-129 printpreview 2-144 prod 2-145 product of array elements 2-145 profile 2-146 profile report 2-150 profreport 2-150 propedi t 2-152, 2-154 **Property Editor** interface 2-153 pseudoinverse 2-91 psi 2-155

push buttons 2-624 pwd 2-157

Q

qmr 2-158 qr **2-162** QR decomposition 2-162 deleting column from 2-166 grdel et e 2-166 grinsert 2-168 qrupdate 2-170 quad 2-173 quad8 2-173 quadl 2-175 quadrature 2-173 questdl g 2-177 quit 2-179 quitting MATLAB 2-179 qui ver 2-181 qui ver3 2-184 qz **2-186** QZ factorization 2-115, 2-186

R

radio buttons 2-624 rand 2-188 randn 2-190 random numbers 2-188, 2-190 permutation 2-192 sparse matrix 2-388, 2-389 symmetric sparse matrix 2-390 randperm 2-192 rank 2-193 rank of a matrix 2-193 rat 2-194 rational fraction approximation 2-194 rats 2-194 rbbox 2-197. 2-231 rcond 2-199 readasync 2-200 reading data from files 2-579 formatted data from strings 2-405 readme file 2-749 real 2-202 real numbers 2-202 reallog 2-203 real max 2-204 real min 2-205 real pow 2-206 real sqrt 2-207 rearranging arrays removing first n singleton dimensions 2-337 removing singleton dimensions 2-404 reshaping 2-248 shifting dimensions 2-337 swapping dimensions 2-84 rearranging matrices rotating 90° 2-279 record 2-208 rectint 2-224 RecursionLimit Root property 2-271 reduced row echelon form 2-284 reducepatch 2-225 reducevol ume 2-229 refresh 2-231 regexp 2-232 regexpi 2-235 regexprep 2-237 registerevent 2-239

regression linear 2-117 rehash 2-241 rel ease 2-243 rem 2-245 remainder after division 2-245 repeatedly executing statements 2-753 replicating a matrix 2-246 repmat 2-246 reports profile 2-150 reset 2-247 reshape 2-248 resi due **2-250** residues of transfer function 2-250 rethrow 2-253 return 2-254 reverse Cuthill-McKee ordering 2-534, 2-536 RGB, converting to HSV 2-255 rgb2hsv 2-255 rgbpl ot 2-256 ri bbon 2-257 right-click and context menus 2-614 rmdi r 2-260 rmfield **2-263** rmpath 2-264 root 2-265 Root graphics object 2-265 root object 2-265 root, see rootobject 2-265 roots 2-274 roots of a polynomial 2-111-2-112, 2-274 rose 2-273, 2-276 rosser 2-278 rot90 2-279 rotate 2-280 rotate3d 2-282

Rotation, Text property 2-574 rotations Jacobi 2-390 round to nearest integer 2-283 round 2-283 roundoff error characteristic polynomial and 2-112 partial fraction expansion and 2-251 polynomial roots and 2-274 sparse matrix conversion and 2-369 rref 2-284 rrefmovie 2-284 rsf2csf 2-286 rubberband box 2-197 run 2-288 runtime 2-289 runtime command 2-289

S

save 2-290, 2-293 save serial port I/O 2-294 saveas 2-296 saveobj 2-299 saving ASCII data 2-290 workspace variables 2-290 scatter 2-300 scatter3 2-302 schur 2-304 Schur decomposition 2-304 Schur form of matrix 2-286, 2-304 ScreenDepth, Root property 2-272 ScreenSize, Root property 2-272 script 2-306

search path 2-264 **MATLAB's 2-49** modifying 2-52 viewing 2-52 sec 2-307 secant 2-307 hyperbolic 2-309 sech 2-309 Selected Patch property 2-46 rectangle property 2-222 Root property 2-272 Surface property 2-512 Text property 2-574 Uicontextmenu property 2-620 **Uicontrol property 2-639** Uimenu property 2-664 selecting areas 2-197 Sel ecti onHi ghl i ght Patch property 2-46 rectangle property 2-222 Surface property 2-513 Text property 2-574 Uicontextmenu property 2-620 **Uicontrol property 2-639** sel ectmoveresi ze 2-311 semilogx 2-312 semilogy 2-312 send 2-314 sendmail 2-315 Separator, Uimenu property 2-665 serial 2-316 seri al break 2-318 set 2-319, 2-322 set serial port I/O 2-323 timer object 2-325

set operations difference 2-329 exclusive or 2-333 union 2-679 unique 2-680 setdiff 2-329 setfield 2-330 setstr 2-332 setxor 2-333 shadi ng 2-334 shading colors in surface plots 2-334 shiftdim **2-337** ShowHi ddenHandl es, Root property 2-272 shrinkfaces 2-338 shutdown 2-179 si gn **2-342** signum function 2-342 Simpson's rule, adaptive recursive 2-174 Simulink version number, displaying 2-702 sin 2-343 sine 2-343 hyperbolic 2-346 single **2-345** singular value decomposition 2-193, 2-520 rank and 2-193 si nh 2-346 si ze array dimesions 2-348 si ze serial port I/O 2-351 size of array dimensions 2-348 size of fonts, see also FontSi ze property 2-576 size vector 2-248 slice 2-352 sliders 2-624

Sl i derStep, Uicontrol property 2-640 smooth3 2-357 smoothing 3-D data 2-357 soccer ball (example) 2-536 sort 2-359 sorting array elements 2-359 matrix rows 2-361 sortrows 2-361 sound converting vector into 2-362, 2-363 files reading 2-741 writing 2-743 playing 2-739 recording 2-742 resampling 2-739 sampling 2-742 sound 2-362, 2-363 source control systems undo checkout 2-678 spall oc 2-364 sparse 2-365 sparse matrix allocating space for 2-364 applying function only to nonzero elements of 2 - 374diagonal 2-370 identity 2-373 random 2-388, 2-389 random symmetric 2-390 replacing nonzero elements of with ones 2 - 384results of mixed operations on 2-366 solving least squares linear system 2-163 specifying maximum number of nonzero elements 2-365

visualizing sparsity pattern of 2-398 spaugment 2-367 spconvert 2-368 spdi ags 2-370 Specul arCol orReflectance Patch property 2-46 Surface property 2-513 Specul arExponent Patch property 2-46 Surface property 2-513 Specul arStrength Patch property 2-47 Surface property 2-513 speye 2-373 spfun 2-374 sph2cart 2-376 sphere 2-377 spherical coordinates 2-376 spinmap 2-379 spl i ne 2-380 spones 2-384 spparms 2-385 sprand 2-388 sprandn 2-389 sprandsym 2-390 sprank 2-391 spreadsheets loading WK1 files 2-761 loading XLS files 2-769 writing from matrix 2-762 sprintf 2-392 sqrt 2-400 sqrtm 2-401 square root of a matrix 2-401 of array elements 2-400 of real numbers 2-207

squeeze 2-404 sscanf 2-405 stairs 2-408 standard deviation 2-413 start timer object 2-410 startat timer object 2-411 startup 2-539 startup file 2-539 static text 2-624 std 2-413 stem 2-415 stem3 2-417 stop timer object 2-419 stopasync 2-420 stopwatch timer 2-585 storage sparse 2-365 storage allocation 2-777 str2doubl e 2-421 str2func 2-422 str2mat 2-423 str2num 2-424 strcat 2-425 strcmp 2-427 strcmpi 2-429 stream lines computing 2-D 2-430 computing 3-D 2-432 drawing 2-434 stream2 2-430 stream3 2-432 strfind **2-455** String Text property 2-574

Uicontrol property 2-640 string comparing one to another 2-427 comparing the first n characters of two 2-460 converting to numeric array 2-424 converting to uppercase 2-693 dictionary sort of 2-361 finding first token in 2-467 searching and replacing 2-466 strings converting to matrix (formatted) 2-405 writing data to 2-392 strings **2-456** strjust 2-458 strmatch 2-459 strncmp 2-460 strncmpi 2-461 strread 2-462 strrep 2-466 strtok 2-467 struct 2-468 struct2cell 2-470 structure array remove field from 2-263 setting contents of a field of 2-330 strvcat 2-471 Style Uicontrol property 2-641 sub2i nd 2-472 subpl ot 2-474 subsasgn 2-476 subscripts in axis title 2-593 in text strings 2-576 subsi ndex 2-477 subspace 2-479 subsref 2-480

substruct 2-481 subvol ume 2-482 sum of array elements 2-484 sum 2-484 superiorto 2-485 superscripts in axis title 2-594 in text strings 2-576 support 2-486 surf 2-487 surf2patch 2-491 Surface converting to a patch 2-491 creating 2-493 defining default properties 2-214, 2-496 properties 2-501 surface 2-493 surfc 2-487 surfl 2-515 surfnorm 2-518 svd 2-520 svds 2-523 switch 2-525 symamd 2-527 symbfact 2-529 symbols in text 2-574 symml q 2-530 symmd 2-534 symrcm 2-536 system 2-540 system directory, temporary 2-545

T

Tag Patch property 2-47

rectangle property 2-222 Root property 2-272 Surface property 2-513 Text property 2-577 Uicontextmenu property 2-620 **Uicontrol property 2-641** Uimenu property 2-665 tan **2-541** tangent 2-541 hyperbolic 2-543 tanh **2-543** tempdir 2-545 tempname 2-546 temporary files 2-546 system directory 2-545 terminal 2-547 terminating MATLAB 2-179 tetrahedron mesh plot 2-549 tetramesh 2-549 TeX commands in text 2-574 Text creating 2-554 defining default properties 2-557 fixed-width font 2-567 properties 2-562 text subscripts 2-576 superscripts 2-576 text 2-554 editing 2-102 textread 2-579 textwrap 2-584 tic 2-585 tiling (copies of a matrix) 2-246 time

elapsed (stopwatch timer) 2-585 timer properties 2-586 timer timer object 2-586 timerfind timer object 2-591 title with superscript 2-593, 2-594 title 2-593 toc 2-585 toeplitz 2-595 **Toeplitz matrix 2-595** toggle buttons 2-624 token See also string 2-467 Tool tipString Uicontrol property 2-641 trace 2-596 trace of a matrix 2-596 trapz 2-597 treel ayout 2-599 treeplot 2-600 triangulation 2-D plot 2-605 tril 2-601 trimesh 2-602 triple integral numerical evaluation 2-603 triplequad 2-603 triplot 2-605 trisurf 2-607 tri u **2-608** true 2-609 try 2-610 tsearch 2-611 tsearchn 2-612 Type

Patch property 2-47 rectangle property 2-223 Root property 2-273 Surface property 2-513 Text property 2-577 Uicontextmenu property 2-620 Uicontrol property 2-641 Uimenu property 2-665 type 2-613

U

UI Context Menu Patch property 2-47 rectangle property 2-223 Surface property 2-514 Text property 2-577 Ui ContextMenu Uicontrol property 2-642 **Uicontextmenu** properties 2-617 **Ui** contextmenu Uicontextmenu property 2-620 ui contextmenu 2-614 Uicontrol defining default properties 2-630 fixed-width font 2-634 properties 2-630 types of 2-622 ui control 2-622 uigetdir 2-644 uigetfile 2-648 uiimport 2-654 Uimenu creating 2-655 defining default properties 2-659 properties 2-659

ui menu 2-655 ui nt 8 2-666 uint8, uint16, uint32, uint64 2-666 uiputfile 2-668 ui resume 2-673 ui set col or 2-674ui setfont 2-675 ui wai t 2-673 uncompress files 2-692 undocheckout 2-678 uni on 2-679 uni que 2-680 unitary matrix (complex) 2-162 Units Root property 2-273 Text property 2-577 Uicontrol property 2-642 uni x 2-682 unmkpp 2-683 unregi steral l events 2-684 unregi sterevent 2-686 unwrap 2-688 unzi p 2-692 upper 2-693 upper triangular matrix 2-608 url opening in Web browser 2-744 url read 2-694 urlwrite 2-695 usej ava 2-696 UserData Patch property 2-47 rectangle property 2-223 Root property 2-273 Surface property 2-514 Text property 2-577 Uicontextmenu property 2-620

Uicontrol property 2-642 Uimenu property 2-665

V

Value, Uicontrol property 2-642 vander 2-697 Vandermonde matrix 2-119 var 2-698 varargout 2-699 variable numbers of M-file arguments 2-699 variables graphical representation of 2-763 in workspace 2-763 listing 2-757 persistent 2-85 saving 2-290 sizes of 2-757 vectori ze 2-701 vectori ze 2-701 ver 2-702 verctrl 2-704 versi on 2-708 version numbers displaying 2-702 returned as strings 2-708 vertcat 2-709 VertexNormals Patch property 2-48 Surface property 2-514 Verti cal Al i gnment, Text property 2-578 Vertices, Patch property 2-48 view azimuth of viewpoint 2-712 coordinate system defining 2-712 elevation of viewpoint 2-712 vi ew 2-711

viewmtx 2-714 Visible Patch property 2-48 rectangle property 2-223 Root property 2-273 Surface property 2-514 Text property 2-578 Uicontextmenu property 2-621 **Uicontrol property 2-643** Uimenu property 2-665 visualizing sparse matrices 2-398 volumes computing 2-D stream lines 2-430 computing 3-D stream lines 2-432 drawing stream lines 2-434 reducing face size in isosurfaces 2-338 reducing number of elements in 2-229 voronoj 2-720 Voronoi diagrams multidimensional vizualization 2-724 two-dimensional vizualization 2-720 voronoi n 2-724

W

wai t timer object 2-727 wai tbar 2-728 wai tfor 2-730 wai tforbuttonpress 2-731 warndl g 2-732 warning **2-733** warning message (enabling, suppressing, and displaying) 2-733 waterfall 2-737 . wav files

reading 2-741 writing 2-743 waveplay 2-739 waverecord 2-742 wavpl ay 2-739 wavread 2-741 wavrecord 2-742 waywrite 2-743 web 2-744 Web browser pointing to file or url 2-744 weekday 2-746 well conditioned 2-199 what 2-747 what snew 2-749 whi ch 2-750 while 2-753 white space characters, ASCII 2-467 whitebg 2-756 wilkinson 2-759 Wilkinson matrix 2-371, 2-759 wi nopen 2-760 WK1 files loading 2-761 writing from matrix 2-762 wk1read 2-761 wk1write 2-762 workspace consolidating memory 2-12 predefining variables 2-539 saving 2-290 variables in 2-757 viewing contents of 2-763 workspace 2-763

Х

zoom 2-780 x-axis limits, setting and querying 2-766 XData Patch property 2-48 Surface property 2-514 xl abel 2-764 xl i m 2-766 XLS files loading 2-769 xl sfinfo 2-768 xl sread 2-769 xml read 2-773 xml write 2-774 logical XOR 2-775 xor 2-775 XOR, printing 2-38, 2-220, 2-507, 2-566 xslt 2-776 xyz coordinates See Cartesian coordinates

zlim 2-766

Υ

y-axis limits, setting and querying 2-766 YData Patch property 2-48 Surface property 2-514 yl abel 2-764 yl i m 2-766

Ζ

z-axis limits, setting and querying 2-766 ZData Patch property 2-48 Surface property 2-514 zeros **2-777** zi p 2-778 zl abel 2-764